chevron_left
chevron_right
Strains and stresses in section I-I (uncracked)
$x \; \mathsf{ [m] }$
$q \; \mathsf{ [kN/m] }$
This app shows the deformations and corresponding internal forces (stress resultants) of a 10m long flexural beam.
The values are calculated assuming linear elastic concrete behaviour (serviceability).
However, the maximum values (e.g. MRd) were determined considering ultimate limit load.
The values are calculated assuming linear elastic concrete behaviour (serviceability).
However, the maximum values (e.g. MRd) were determined considering ultimate limit load.
$f_{ctm}$ | 2.9 | $\mathsf{[MPa]}$ |
$f_{cd}$ | 20 | $\mathsf{[MPa]}$ |
$E_c$ | 33.6 | $\mathsf{[GPa]}$ |
$f_{sd}$ | 435 | $\mathsf{[MPa]}$ |
$E_{s}$ | 205 | $\mathsf{[GPa]}$ |
$n$ | 6.10 |
$M$ | 0 | $\mathsf{[kNm]}$ | $\chi$ | 0 | $\mathsf{[mm^{-1}]}$ |
$x$ | 0 | $\mathsf{[mm]}$ | $w$ | 0 | $\mathsf{[mm]}$ |
$\varepsilon_{sup}$ | 0 | $\mathsf{[‰]}$ | $\sigma_{sup}$ | 0 | $\mathsf{[MPa]}$ |
$\varepsilon_{inf}$ | 0 | $\mathsf{[‰]}$ | $\sigma_{inf}$ | 0 | $\mathsf{[MPa]}$ |
$\varepsilon_{s}$ | 0 | $\mathsf{[‰]}$ | $\sigma_{s}$ | 0 | $\mathsf{[MPa]}$ |
$EI^{I}$ | 0 | $\mathsf{[Nmm^2]}$ | |||
$EI^{II}$ | 0 | $\mathsf{[Nmm^2]}$ |