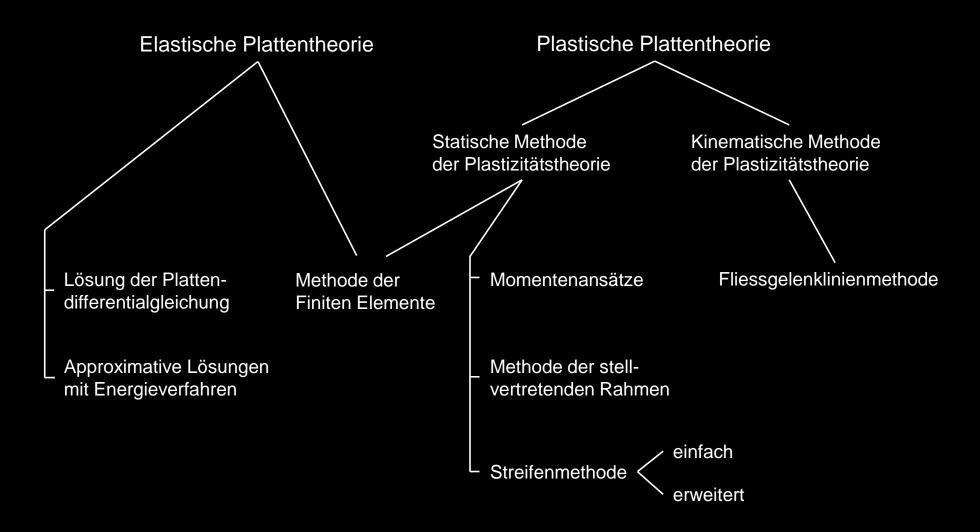
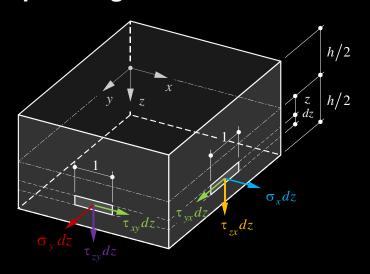
Flächentragwerke allgemein

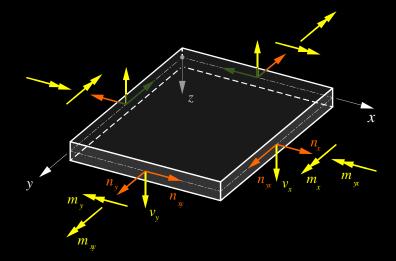
Scheiben primär in Ebene belastet

Tragwerksanalyse / Berechnungsmethoden - Übersicht



Ebene Elemente - Spannungsresultierende





$$m_{x} = \int_{-h/2}^{h/2} \sigma_{x} z \, dz, \qquad m_{y} = \int_{-h/2}^{h/2} \sigma_{y} z \, dz, \qquad m_{xy} = m_{yx} = \int_{-h/2}^{h/2} \tau_{xy} z \, dz$$
 [kNm/m=kN]

[kN/m]

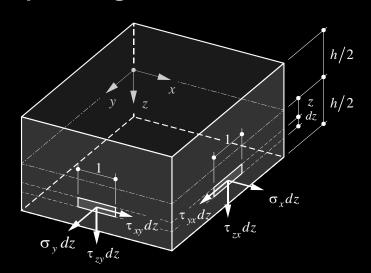
[kN/m]

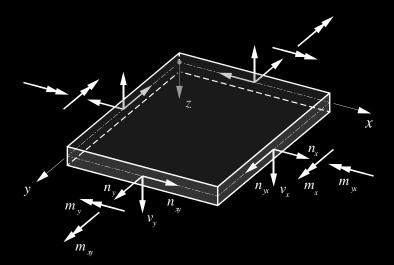
Biegespannungszustand (Platte): Biegemomente und Querkräfte

$$n_x = \int_{-h/2}^{h/2} \sigma_x dz$$
, $n_y = \int_{-h/2}^{h/2} \sigma_y dz$, $n_{xy} = n_{yx} = \int_{-h/2}^{h/2} \tau_{xy} dz$

Membranspannungszustand (Scheibe): Membrankräfte (Normal-/Schubkräfte)

Ebene Elemente - Spannungsresultierende





$$m_x = \int_{-h/2}^{h/2} \sigma_x z \, dz, \qquad m_y = \int_{-h/2}^{h/2} \sigma_y z \, dz, \qquad m_{xy} = m_{yx} = \int_{-h/2}^{h/2} \tau_{xy} z \, dz$$

$$v_x = \int_{-h/2}^{h/2} \tau_{zx} dz, \quad v_y = \int_{-h/2}^{h/2} \tau_{zy} dz$$

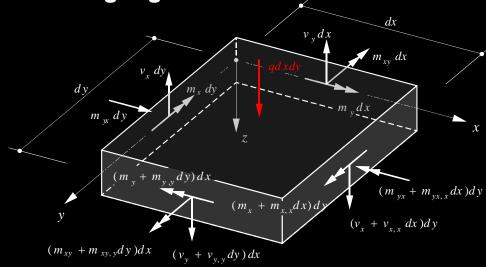
$$n_x = \int_{-h/2}^{h/2} \sigma_x dz$$
, $n_y = \int_{-h/2}^{h/2} \sigma_y dz$, $n_{xy} = n_{yx} = \int_{-h/2}^{h/2} \tau_{xy} dz$

Vorzeichenkonvention

- Positive Spannungen wirken an Elementen mit positiver äusserer Normalenrichtung in positiver Achsenrichtung
- Positive Membran- und Querkräfte entsprechen positiven zugehörigen Spannungen
- Positive Momente entsprechen positiven zugehörigen Spannungen für z > 0
- Indizes: 1. Index: Richtung der Spannung
 - 2. Index: Normalenrichtung des Elements, an dem Spannung wirkt

Platten – Statische Beziehungen

Gleichgewichtsbedingungen – kartesische Koordinaten



Herleitung über Gleichgewicht am differentiellen Plattenelement:

$$-v_{x} dy - v_{y} dx + \left(v_{y} + \frac{\partial v_{y}}{\partial y} dy\right) dx + \left(v_{x} + \frac{\partial v_{x}}{\partial x} dx\right) dy + q dx dy = 0$$

$$-m_{x} dy - m_{xy} dx + \left(m_{x} + \frac{\partial m_{x}}{\partial x} dx\right) dy + \left(m_{xy} + \frac{\partial m_{xy}}{\partial y} dy\right) dx - v_{x} dy dx = 0$$

$$-m_{y} dx - m_{yx} dy + \left(m_{y} + \frac{\partial m_{y}}{\partial y} dy\right) dx + \left(m_{yx} + \frac{\partial m_{yx}}{\partial x} dx\right) dy - v_{y} dx dy = 0$$

Terme mit $(dx)^2$ bzw. $(dy)^2$ vernachlässigt

→ Plattengleichgewichtsbedingung:

$$\frac{\partial^2 m_x}{\partial x^2} + 2 \frac{\partial^2 m_{xy}}{\partial x \partial y} + \frac{\partial^2 m_y}{\partial y^2} + q = 0$$

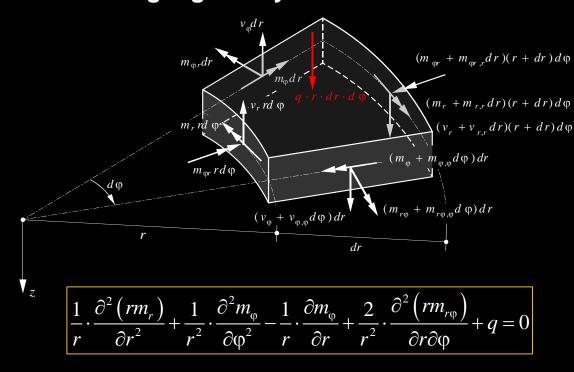
Balken in zusätzlich: Balken in x-Richtung Drillmomente y-Richtung

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + q = 0$$

$$\frac{\partial m_x}{\partial x} + \frac{\partial m_{xy}}{\partial y} - v_x = 0$$

$$\frac{\partial m_y}{\partial x} + \frac{\partial m_{yx}}{\partial y} - v_y = 0$$

Gleichgewichtsbedingungen – Zylinderkoordinaten



Herleitung über Gleichgewicht am differentiellen Plattenelement:

$$\frac{\partial (rv_r)}{\partial r} + \frac{\partial v_{\varphi}}{\partial \varphi} + qr = 0$$

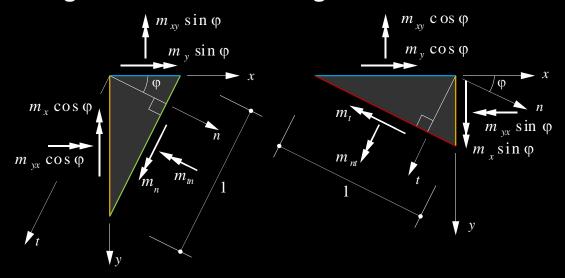
$$\frac{\partial (rm_r)}{\partial r} - m_{\varphi} + \frac{\partial m_{r\varphi}}{\partial \varphi} - rv_r = 0$$

$$2m_{r\phi} + r \cdot \frac{\partial \left(m_{r\phi}\right)}{\partial r} + \frac{\partial m_{\phi}}{\partial \varphi} - rv_{\phi} = 0$$

Bzw. für rotationssymmetrische Fälle:

$$\frac{\partial^{2}(rm_{r})}{\partial r^{2}} - \frac{\partial m_{\varphi}}{\partial r} + qr = 0$$

Spannungstransformation: Biege- und Drillmomente



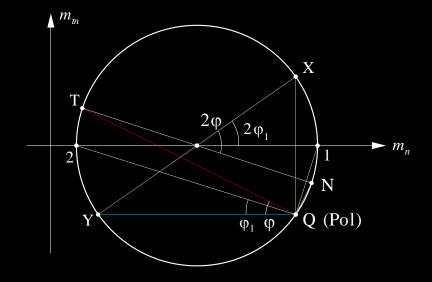
Biege- und Drillmomente in einer beliebigen Richtung φ:

$$m_n = m_x \cos^2 \varphi + m_y \sin^2 \varphi + m_{xy} \sin 2\varphi$$

$$m_t = m_x \sin^2 \varphi + m_y \cos^2 \varphi - m_{xy} \sin 2\varphi$$

$$m_m = (m_y - m_x) \sin \varphi \cos \varphi + m_{xy} \cos 2\varphi$$

$$NB: \sin 2\varphi = 2 \sin \varphi \cos \varphi, \cos 2\varphi = \cos^2 \varphi - \sin^2 \varphi$$

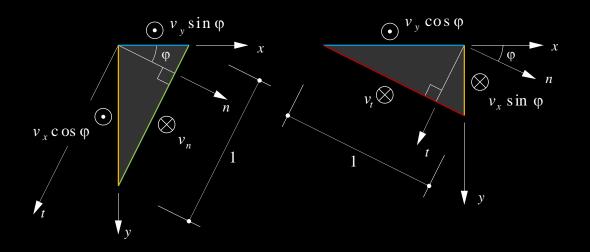


Hauptrichtung ϕ_1 (Drillmomente = 0) und Hauptmomente (\rightarrow Mohr'scher Kreis):

$$\tan 2\varphi_1 = \frac{2m_{xy}}{m_x - m_y}$$

$$m_{1,2} = \frac{m_x + m_y}{2} \pm \frac{\sqrt{(m_x - m_y)^2 + 4m_{xy}^2}}{2}$$

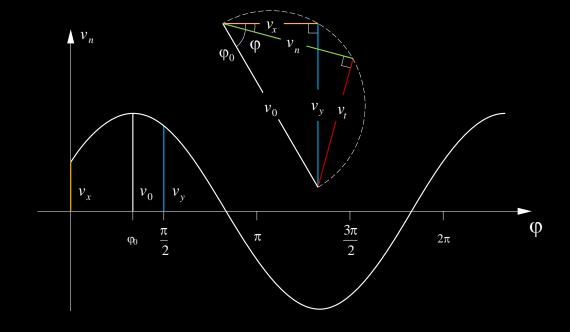
Spannungstransformation: Querkräfte



Querkräfte in einer beliebigen Richtung φ:

$$v_n = v_x \cos \varphi + v_y \sin \varphi$$

$$v_t = -v_x \sin \varphi + v_y \cos \varphi$$



Hauptquerkraft und zugehörige Richtung ϕ_0 (Interpretation mit Thaleskreis):

$$v_0 = \sqrt{v_x^2 + v_y^2}$$
 $\tan \varphi_0 = \frac{v_y}{v_x}$ (allgemein ist $\varphi_0 \neq \varphi_1$)

Randbedingungen allgemein (elastische Platten)

Am Rand einer Platte greifen allgemein Momente m_p , m_{tp} und eine Querkraft v_p an.

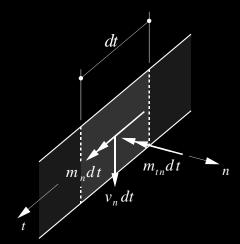
Inhomogene Bipotentialgleichung gemäss Kirchhoffscher Theorie dünner elastischer Platten mit kleinen Durchbiegungen:

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \Delta \Delta w = \frac{q}{D} \quad mit \quad D = \frac{Eh^3}{12(1 - v^2)}$$

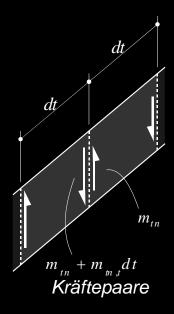
- → dabei sind nur 2 Randbedingungen an die Lösung anpassbar
- \rightarrow jedoch 3 Kraftgrössen vorhanden (m_n , m_{tn} , v_n)
- → zusätzliche Bedingung erforderlich

Weitere Bedingung für einfach gelagerte und freie Plattenränder:

 \rightarrow Ersetzen der Drillmomente $m_{tn}\cdot dt$ durch stetige Verteilung von vertikalen Kräftepaaren m_{tn} , welche sich an den Grenzen zwischen den infinitesimalen Elementen jeweils bis auf den Zuwachs $m_{tn,t}\cdot dt$ aufheben



Kräfte am Plattenrand



Randbedingungen allgemein (elastische Platten)

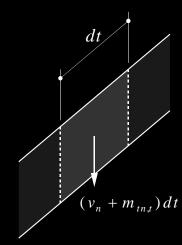
 \rightarrow Zuwachs pro Längeneinheit dm_{tn}/dt wird mit der Querkraft v_n zu einer Stützkraft zusammengefasst

$$v_n + \frac{\partial m_{tn}}{\partial t} = \frac{\partial m_n}{\partial n} + 2 \frac{\partial m_{nt}}{\partial t}$$

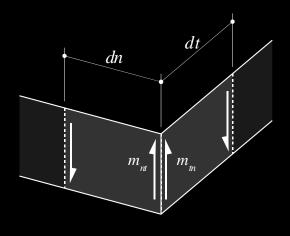
(Herleitung mit Gleichgewichtsbeziehung $\frac{\partial m_x}{\partial x} + \frac{\partial m_{xy}}{\partial y} - v_x = 0$)

 \rightarrow In einer Plattenecke addieren sich die Drillmomente der beiden Ränder zu einer Eckkraft von 2 m_{tn}

Diese Behandlung von Drillmomenten am Plattenrand geht auf Thomson und Tait (1883) zurück und lässt sich mit dem Prinzip von de Saint Venant «begründen».



Stützkraft



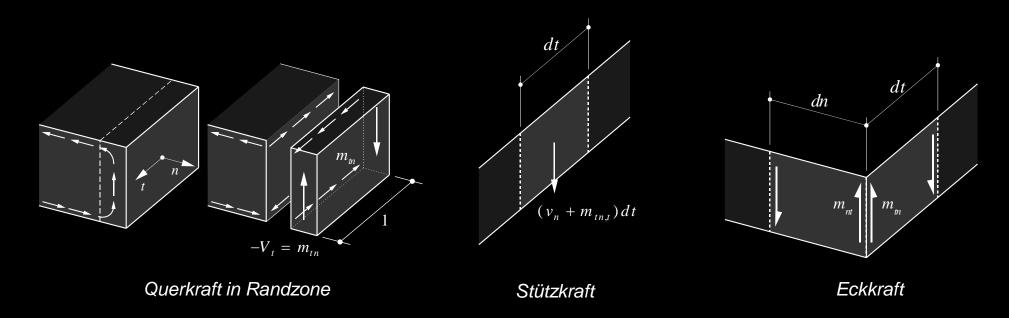
Eckkraft

ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton II

Randbedingungen auf der Basis von Gleichgewichtsüberlegungen

Statische Methode der Plastizitätstheorie – Erklärung mit Tragwirkung im Bereich von Plattenrändern, welche nur auf Gleichgewichtsüberlegungen beruht:

- \rightarrow Aus Gleichgewicht in einer schmalen Randzone der Platte folgt die Randquerkraft: $V_t = -m_{tn}$
- \rightarrow sofern: Plattenrand ist spannungsfrei und die in der Randzone auftretenden Spannungen σ_t ändern sich nicht in t-Richtung (Clyde, 1979).
- \rightarrow Aus der Randquerkraft $V_t = -m_{tn}$ folgen die Eckkräfte 2 m_{tn} und der Beitrag von $m_{tn,t}$ zur Stützkraft



Randbedingungen auf der Basis von Gleichgewichtsüberlegungen

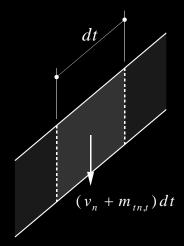
→ Randbedingungen auf Basis von Gleichgewichtsüberlegungen:

- eingespannter Rand: m_n , m_{tn} und v_n beliebig
- einfach gelagerter Rand: $m_n = 0$, resultierende Stützkraft:

$$v_n + \frac{\partial m_{tn}}{\partial t} = \frac{\partial m_n}{\partial n} + 2 \frac{\partial m_{nt}}{\partial t}$$

• freier Rand: $m_n = 0$, verschwindende Stützkraft:

$$v_n + \frac{\partial m_m}{\partial t} = \frac{\partial m_n}{\partial n} + 2\frac{\partial m_{nt}}{\partial t} = 0$$



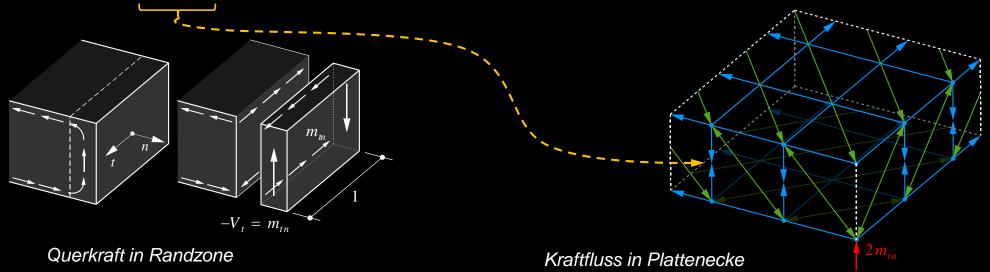
Stützkraft

Randbewehrung

Werden entlang von einfach gelagerten und freien Rändern Drillmomente in Rechnung gestellt, so ist eine Bewehrung zur Aufnahme von $V_t = -m_{tn}$ anzuordnen.

Veranschaulichung (Ecke, reine Drillung):

- → Ober- und Unterseite: zueinander senkrechte, unter 45° zu den Plattenrändern geneigte Betondruckstreben, Aufnahme der randnormalen Komponenten durch randparallele Bewehrung
- \rightarrow Komponenten in Richtung der Plattenränder werden durch geneigte Betondruckstreben in den Randstreifen weitergeleitet; Vertikalkomponenten entsprechen den Randquerkräften $V_t = -m_{tn}$
- \rightarrow Aufnahme von $V_t = -m_{tn}$ mit Steckbügeln oder entsprechender Abbiegung der Biegebewehrung



Diskontinuitäten

Im Platteninnern sind statische Diskontinuitätslinien zulässig (↔ Äquivalenz von Drillmomenten am Plattenrand und Randquerkräften, man füge in Gedanken zwei freie Plattenränder zusammen).

An Diskontinuitätslinien

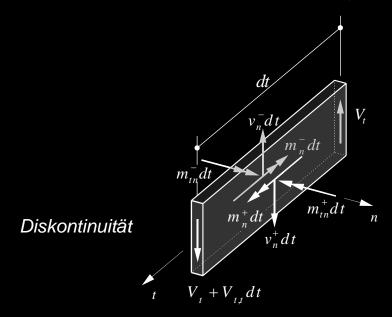
- \rightarrow müssen Biegemomente m_n stetig sein $(m_n^+ = m_n^-)$
- \rightarrow dürfen Drillmomente m_{nt} und Querkräfte v_n springen $(m_{nt}^+ \neq m_{nt}^-, v_n^+ \neq v_n^-)$

Somit gelten für eine statische Diskontinuitätslinie, entlang welcher eine Querkraft V_t abgetragen wird, folgende Bedingungen:

$$m_n^- = m_n^+$$

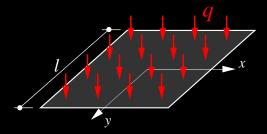
$$V_t = m_{nt}^+ - m_{nt}^-$$

$$\frac{\partial V_t}{\partial t} = v_n^- - v_n^+$$



Randbedingungen – Beispiel 1 (Gleichgewichtslösung)

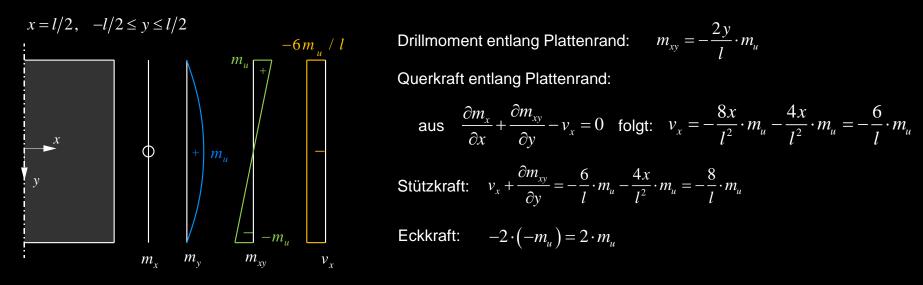
Gegeben: Quadratplatte unter Flächenlast q mit Ansätzen für Biegemomente m_x , m_v und Drillmoment m_{xv}



$$m_{x} = \left(1 - \frac{4x^{2}}{l^{2}}\right) \cdot m_{u} \qquad m_{y} = \left(1 - \frac{4y^{2}}{l^{2}}\right) \cdot m_{u} \qquad m_{xy} = -\frac{4xy}{l^{2}} \cdot m_{u}$$

Gleichgewicht:
$$\frac{\partial^2 m_x}{\partial x^2} + 2 \frac{\partial^2 m_{xy}}{\partial x \partial y} + \frac{\partial^2 m_y}{\partial y^2} + q = 0$$
 \rightarrow $\mathbf{q} = \frac{24m_u}{l^2}$

Gesucht. Schnittkraftverläufe am Plattenrand, Stützkraft, Eckkraft, Lagerung der Platte



Drillmoment entlang Plattenrand: $m_{xy} = -\frac{2y}{r} \cdot m_u$

aus
$$\frac{\partial m_x}{\partial x} + \frac{\partial m_{xy}}{\partial y} - v_x = 0$$
 folgt: $v_x = -\frac{8x}{l^2} \cdot m_u - \frac{4x}{l^2} \cdot m_u = -\frac{6}{l} \cdot m_u$

Stützkraft:
$$v_x + \frac{\partial m_{xy}}{\partial y} = -\frac{6}{l} \cdot m_u - \frac{4x}{l^2} \cdot m_u = -\frac{8}{l} \cdot m_u$$

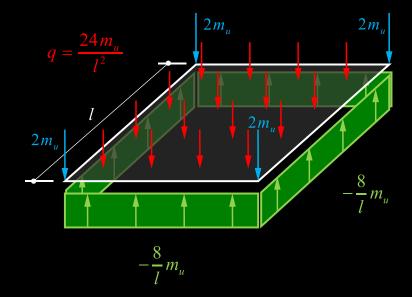
Eckkraft:
$$-2 \cdot (-m_u) = 2 \cdot m_u$$

Randbedingungen – Beispiel 1 (Gleichgewichtslösung)

Lagerung der Platte: Aus der konstanten Stützkraft folgt, dass die Platte entlang ihrer Ränder einfach gelagert sein muss. Die Ecken sind gegen Abheben gesichert (→ nach unten gerichtete Eckkräfte)

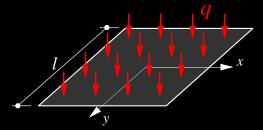
Stützkraft:
$$v_x + \frac{\partial m_{xy}}{\partial y} = -\frac{8}{l} \cdot m_u$$

Eckkraft: $2 \cdot m_u$



Randbedingungen – Beispiel 2 (Gleichgewichtslösung)

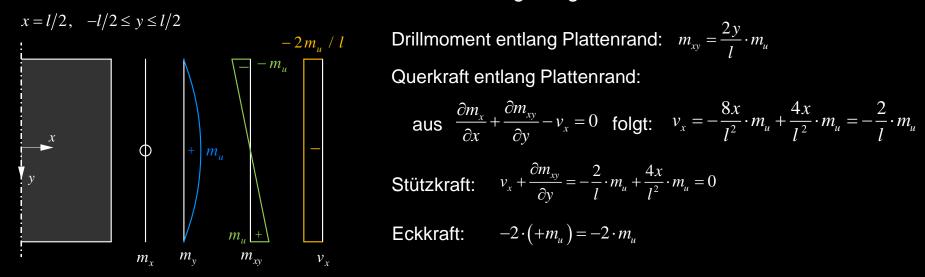
Gegeben: Quadratplatte unter Flächenlast q mit Ansätzen für Biegemomente m_x , m_y und Drillmoment m_{xy}



$$m_{x} = \left(1 - \frac{4x^{2}}{l^{2}}\right) \cdot m_{u} \qquad m_{y} = \left(1 - \frac{4y^{2}}{l^{2}}\right) \cdot m_{u} \qquad m_{xy} = \underbrace{+\frac{4xy}{l^{2}} \cdot m_{u}}$$

Gleichgewicht:
$$\frac{\partial^2 m_x}{\partial x^2} + 2 \frac{\partial^2 m_{xy}}{\partial x \partial y} + \frac{\partial^2 m_y}{\partial y^2} + q = 0$$
 \rightarrow $q = \frac{8m_u}{l^2}$

Gesucht: Schnittkraftverläufe am Plattenrand, Stützkraft, Eckkraft, Lagerung der Platte



Drillmoment entlang Plattenrand: $m_{xy} = \frac{2y}{I} \cdot m_{u}$

Querkraft entlang Plattenrand:

aus
$$\frac{\partial m_x}{\partial x} + \frac{\partial m_{xy}}{\partial y} - v_x = 0$$
 folgt: $v_x = -\frac{8x}{l^2} \cdot m_u + \frac{4x}{l^2} \cdot m_u = -\frac{2}{l} \cdot m_u$

Stützkraft:
$$v_x + \frac{\partial m_{xy}}{\partial y} = -\frac{2}{l} \cdot m_u + \frac{4x}{l^2} \cdot m_u = 0$$

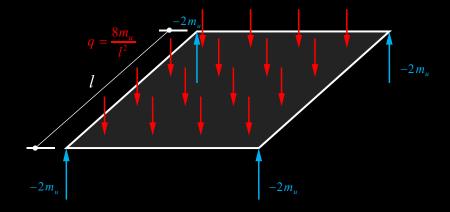
Eckkraft:
$$-2 \cdot (+m_u) = -2 \cdot m_u$$

Randbedingungen – Beispiel 2 (Gleichgewichtslösung)

Lagerung der Platte: Aus der verschwindenden Stützkraft folgt, dass die Platte entlang ihrer Ränder frei und lediglich an den Ecken gestützt ist.

Stützkraft: $v_x + \frac{\partial m_{xy}}{\partial y} = 0$

Eckkraft: $-2 \cdot m_u$

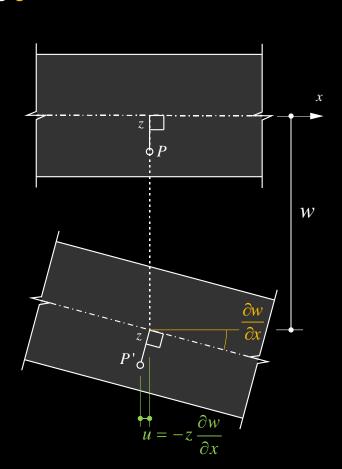


Platten – Kinematische Beziehungen

Platten – Kinematische Beziehungen

Beziehungen für dünne Platten

Nach der Theorie von Kirchhoff über dünne Platten wird angenommen, dass die Normalen zur Plattenmittelebene während der Verformung gerade und senkrecht zur verformten Mittelfläche bleiben.



Verschiebungen:
$$u = -z \cdot \frac{\partial w}{\partial x}$$
 x - Richtung

$$v = -z \cdot \frac{\partial w}{\partial y}$$
 y - Richtung

Verzerrungen:
$$\varepsilon_x = \frac{\partial u}{\partial x} = -z \cdot \frac{\partial^2 w}{\partial x^2} = z \cdot \chi_x$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} = -z \cdot \frac{\partial^{2} w}{\partial y^{2}} = z \cdot \chi_{y}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = -2z \cdot \frac{\partial^2 w}{\partial x \partial y} = 2z \cdot \chi_{xy}$$

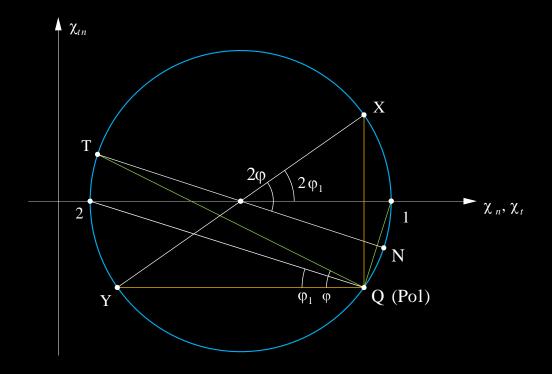
Krümmungen:
$$\chi_x = -\frac{\partial^2 w}{\partial x^2} \qquad \chi_y = -\frac{\partial^2 w}{\partial y^2}$$

Drillung:
$$\chi_{xy} = -\frac{\partial^2 w}{\partial x \partial y}$$

Platten – Kinematische Beziehungen

Transformation der Krümmungen und Drillungen

Analog zur Transformation der Normal- und Schubspannungen



Annahmen der elastischen Plattentheorie

Die Theorie von Gustav Robert KIRCHHOFF für dünne Platten gründet auf folgenden Annahmen:

- 1. Die Plattendicke *h* ist konstant und klein gegenüber anderen Abmessungen.
 - \rightarrow Die Normalspannungen σ_z werden vernachlässigt. Die Spannungsverteilung in der Platte darf damit als eben und über h linear angenommen werden.
- 2. Die Normalen zur Plattenmittelebene bleiben gerade und senkrecht zur verformten Mittelebene.
 - \rightarrow Die Schubverzerrungen γ_{xz} und γ_{yz} verschwinden in der Folge (schubstarre Platten). Damit ist z eine Hauptrichtung.
- 3. Der Zusammenhang zwischen den einzelnen Plattenschichten wird als gelöst betrachtet.
 - → Zusammen mit Annahme 2 entspricht dies den Grundannahmen der Balkentheorie.
- 4. Die Durchbiegungen w sind klein gegenüber h und unabhängig von z.
 - → Das Gleichgewicht kann damit am unverformten System gebildet werden, es treten i.d.R. keine Membrankräfte auf. In Kombination mit Annahme 2 ergeben sich die kinematischen Beziehungen.
- 5. Der Werkstoff ist homogen, isotrop und linear elastisch.

Plattengleichung

Aus dem Stoffgesetz (linear elastisch, Hooke'sches Gesetz), den kinematischen Beziehungen sowie dem Gleichgewicht am infinitesimalen Element folgt die sogenannte Plattengleichung.

Hooke'sches Gesetz für den ebenen Spannungszustand: $\sigma_x = \frac{E}{1-v^2} (\epsilon_x + v \cdot \epsilon_y)$ $\sigma_y = \frac{E}{1-v^2} (\epsilon_y + v \cdot \epsilon_x)$ $\sigma_y = \frac{E}{1-v^2} (\epsilon_y + v \cdot \epsilon_y)$

$$\sigma_{x} = \frac{E}{1 - v^{2}} \left(\varepsilon_{x} + v \cdot \varepsilon_{y} \right)$$

$$\sigma_{y} = \frac{E}{1 - v^{2}} \left(\varepsilon_{y} + v \cdot \varepsilon_{x} \right)$$

$$\tau_{xy} = \frac{E}{2(1+v)} \cdot \gamma_{xy}$$

Plattengleichung:

$$\boxed{\frac{\partial^4 w}{\partial x^4} + 2\frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \Delta \Delta w = \frac{q}{D} \quad mit \quad D = \frac{Eh^3}{12(1 - \upsilon^2)}}$$

Balken in Zusatz- Balken in term y-Richtung x-Richtung

Plattensteifigkeit

Inhomogene Differentialgleichung 4. Ordnung (inhomogene Bipotentialgleichung)

- \rightarrow 2 Randbedingungen anpassbar, jedoch 3 Grössen vorhanden (m_n , m_{nt} und v_t) \rightarrow Stützkraft
- eingespannter Rand: m_n , m_{tn} und v_n beliebig
- einfach gelagerter Rand: m_n = 0, resultierende Stützkraft: $v_n + \frac{\partial m_m}{\partial t} = \frac{\partial m_n}{\partial n} + 2\frac{\partial m_{nt}}{\partial t}$ freier Rand: m_n = 0, verschwindende Stützkraft: $v_n + \frac{\partial m_m}{\partial t} = \frac{\partial m_n}{\partial n} + 2\frac{\partial m_{nt}}{\partial t} = 0$

• freier Rand:
$$m_n = 0$$
, verschwindende Stützkraft:

$$v_n + \frac{\partial m_m}{\partial t} = \frac{\partial m_n}{\partial n} + 2\frac{\partial m_{nt}}{\partial t}$$

$$v_n + \frac{\partial m_{tn}}{\partial t} = \frac{\partial m_n}{\partial n} + 2\frac{\partial m_{nt}}{\partial t} = 0$$

Vergleiche Folie zu den Randbedingungen

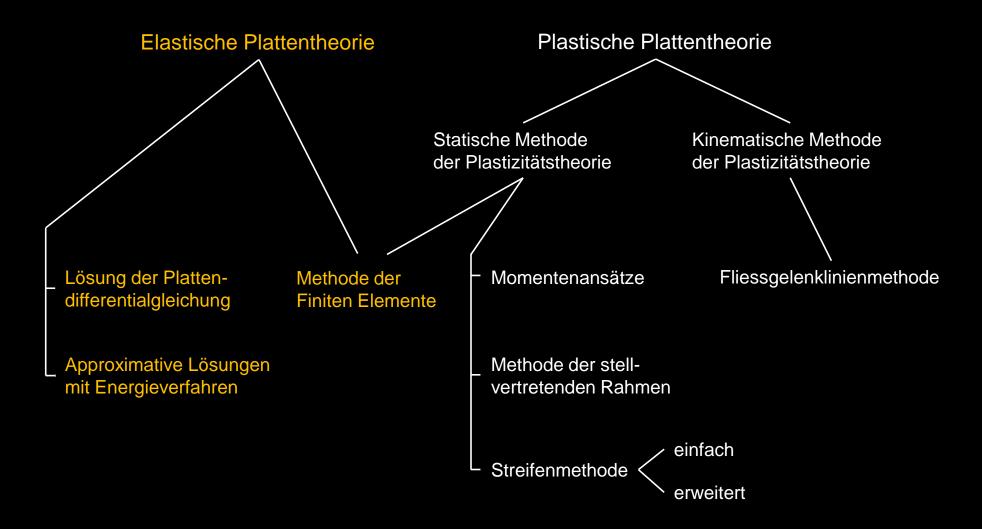
Abschätzung der Durchbiegungen

Die Durchbiegungen in Plattenmitte können als Vielfaches derjenigen des einfachen Balkens gleicher Spannweite abgeschätzt werden (nach Bachmann, 1991):

$$w = c \cdot \frac{5}{384} \frac{ql^4}{D} \qquad D = \frac{EI}{1 - v^2} \qquad q = const.$$
Einfach gelagerte Platte
$$c = 0.312$$
In den Ecken gestützte Platte
$$c = 2.25$$
Eingespannte Platte
$$c = 0.098$$
Mittelfeld einer unendlich ausgedehnten Flachdecke
$$c = 0.446$$

Zu beachten ist der Steifigkeitsabfall infolge Kriechen ($E_{c\infty} \approx E_{c0}/3$) und Rissbildung bzw. die Steifigkeitserhöhung infolge Zugversteifung und die kleineren Durchbiegungen bei Vorspannung

Tragwerksanalyse / Berechnungsmethoden – Übersicht



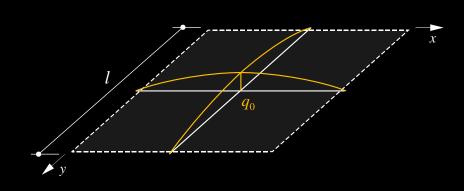
Lösungsverfahren

- Direkte Lösung der Plattengleichung
 - → für spezielle Problemstellungen möglich (z.B. rotationssymmetrische Platten)
 - → Resultate sind in Literatur vorhanden und insbesondere für Abschätzungen und Plausibilitätskontrollen wertvoll
- Approximative Lösung der Plattengleichung mit Fourier-Reihenansätzen oder Energieverfahren
 - → z.B. für Rechteckplatten mit unterschiedlichen Randbedingungen und Belastungsanordnungen
- Lösung der Plattengleichung mit der Methode der Finiten Elemente
 - → Lösung der Verträglichkeits- und Gleichgewichtsbedingungen am infinitesimalen Element
 - → beliebige Randbedingungen und Belastungen möglich
 - → heute meistens verwendet

Direkte Lösung der Plattendifferentialgleichung – Beispiel

Einfach gelagerte Quadratplatte unter sinusförmiger Flächenlast q(x,y) (Lsg. n. Navier)

v: Querdehnungszahl



Last.
$$q = q_0 \cdot \sin\left(\frac{\pi x}{l}\right) \cdot \sin\left(\frac{\pi y}{l}\right)$$

Differentialgleichung:
$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \Delta \Delta w = \frac{q}{D}$$

$$m_{x} = -D\left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}}\right)$$

$$m_{y} = -D\left(\frac{\partial^{2} w}{\partial y^{2}} + v \frac{\partial^{2} w}{\partial x^{2}}\right)$$

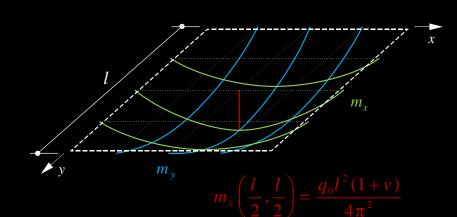
Ansatz:
$$w = 0$$

Ansatz:
$$w = C \cdot \sin\left(\frac{\pi x}{l}\right) \cdot \sin\left(\frac{\pi y}{l}\right)$$

Randbedingungen:
$$w(0, y) = w(l, y) = w(x, 0) = w(x, l) = 0$$

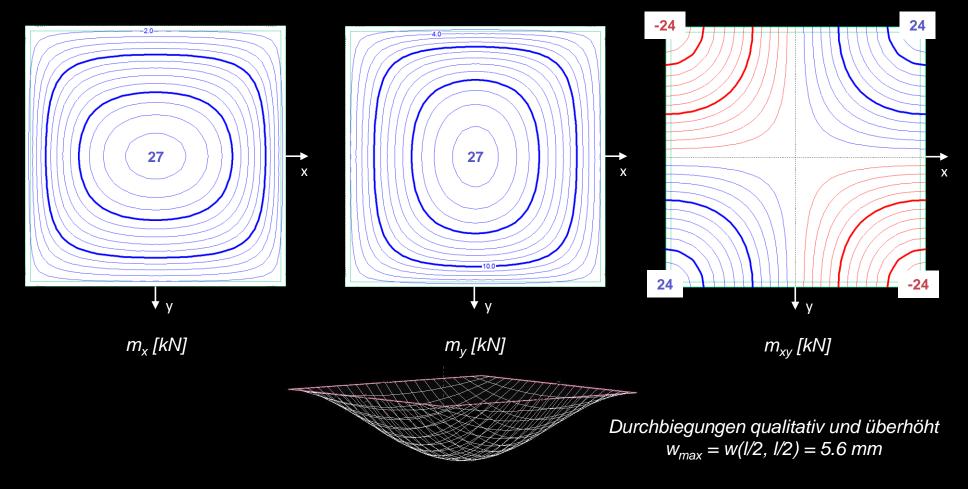
$$m_x(0, y) = m_x(l, y) = m_y(x, 0) = m_y(x, l) = 0$$

Lösung:
$$C = \frac{q_0 l^4}{4\pi^4 D}$$
 $w = \frac{q_0 l^4}{4\pi^4 D} \cdot \sin\left(\frac{\pi x}{l}\right) \cdot \sin\left(\frac{\pi y}{l}\right)$



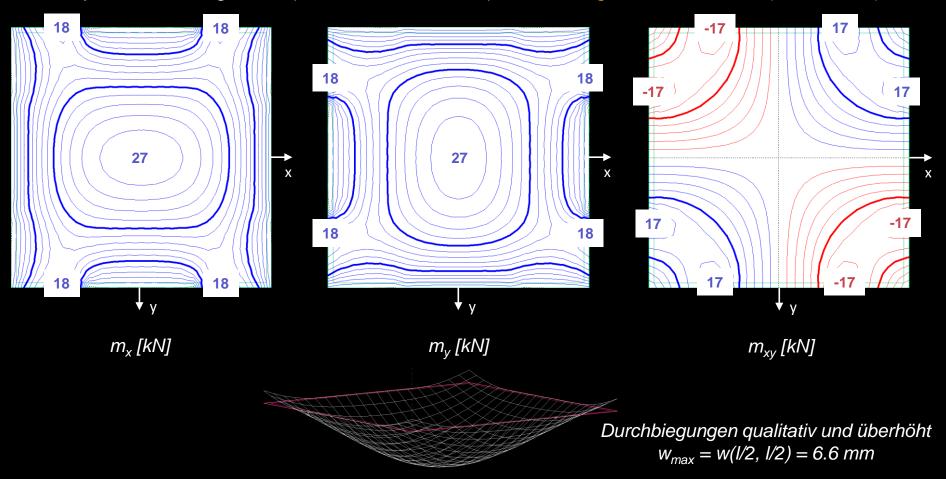
Lösungsverfahren mit finiten Elementen – Beispiel

Randgestützte Quadratplatte unter Eigenlast (I = 10 m, h = 0.25 m)



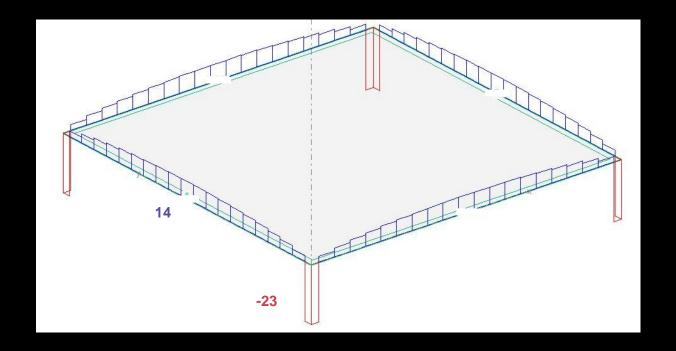
Lösungsverfahren mit finiten Elementen – Beispiel

Randgestützte Quadratplatte unter Eigenlast (I = 10 m, h = 0.25 m) – ohne negative Stützkräfte (=Eckkräfte)

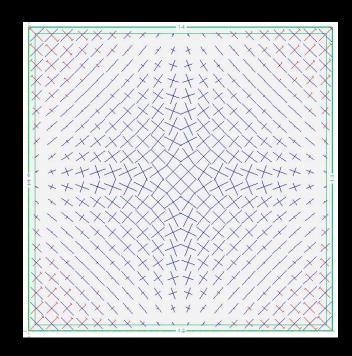


Lösungsverfahren mit finiten Elementen – Beispiel

Randgestützte Quadratplatte unter Eigenlast (I = 10 m, h = 0.25 m)



Stützkraft am Rand [kN pro Abschnitt]



Richtungen der Hauptmomente (blau: positiv, rot: negativ)