

Stahlbeton II			Frühjahrssemester	Seite 1/6	
Kolloquium 1			Musterlösung	an/ 27.01.2022 amr/25.07.202 mep/27.02.202	23(rev.)
Baustoffe Beton	C30/37	$f_{cd} = 20 \text{MPa}$; $f_{cm} = 20 \text{MPa}$	2.9 MPa	SIA 262 Tab. 8, T	
		$E_{cm} = 33.6$ GPa $D_{max} = 16$ mm $\tau_{cd} = 1.1$ MPa		3.1.2.3.3 Tab. 8	
Spannstahl	Wird in Abs	schnitt b) definiert			
a) Plattenstärke u	und Schnittgröss	<u>en</u>			
Wahl: <i>h</i> =	rgespannte Platte $= 0.32 \mathrm{m} \left(l/h = 3 \right) $ $h \cdot \gamma_c = 0.32 \mathrm{m} \cdot 25 $,	≈ 30 ÷ 40	SIA 261 Tab.28	
Statisches Syster	n:				
	$g_{0k} + g_{1k} + q_k$				

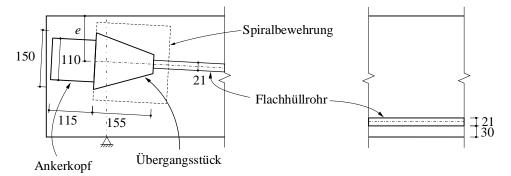
Massgebende Schnittgrössen:

	g _{Ok}	$g_{0k} + g_{1k}$	$g_{0k} + g_{1k} + q_k$	d-Niveau	
q	8	10	13	18	kN/m^2
v_{max}	48	60	78	108	kN/m
m_{max}	144	180	234	324	kNm/m

$$q_d = \gamma_G \cdot (g_{0k} + g_{1k}) + \gamma_Q \cdot q_k = 18 \frac{kN}{m^2}$$

Stahlbeton II	Frühjahrssemester	Seite 2/6
Kolloquium 1	Musterlösung	an/ 27.01.2022 amr/25.07.2023(rev.) mep/27.02.2024 (rev.)

b) Vorspannkonzept

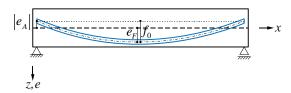

In Flachdecken sind aufgrund der knappen Platzverhältnisse i.d.R. Monolitzen oder Spanngliedeinheiten in flachen Hüllrohren zweckmässig.

Wahl:

- Spanngliedeinheiten VSL 6-4 Y1860, $A_p = 600\,\mathrm{mm}^2$, $f_{pk} = 1860\,\mathrm{MPa}$, $E_p = 195\,\mathrm{GPa}$
- Flache Stahlhüllrohre, Aussenabmessungen 75/21mm ($h_{\odot} = 21 \, \text{mm}$)
- Bewegliche Verankerung VSL EC30
- Feste Verankerung VSL P30
- Parabolische Kabelführung mit maximalen Exzentrizitäten
- Anzahl Spannglieder nach Konzept des Lastausgleichs für ständige Lasten

Detail Spannverankerung 1:10

Detail Feldmitte 1:10


XC1, R60: $c_{nom,p} = 30 \,\mathrm{mm}$ für Spannstahl, $c_{nom} = 20 \,\mathrm{mm}$ für Betonstahl

Minimaler Achsabstand: $X = 215 \,\mathrm{mm}$

Randabstand:
$$e = \frac{X}{2} + c_{nom, p} - 10 \text{ mm} = 128 \text{ mm}$$

Pfeilhöhe
$$f_0 = h - e - c_{nom,p} - \frac{h_{\emptyset}}{2} = 151 \,\text{mm}$$

Spanngliedführung stark überhöht

Lastausgleich für ständige Lasten:

$$\begin{split} u_{\infty} &= \frac{8 p_{\infty} f_0}{l^2} \approx g_{0k} + g_{1k} \\ &\to p_{\infty} \approx \frac{\left(g_{0k} + g_{1k}\right) \cdot l^2}{8 f_0} = 1192 \frac{\text{kN}}{\text{m}} \\ \text{mit } \sigma_{p\infty} &\approx 0.85 \sigma_{p0} \approx 0.85 \cdot 0.7 f_{pk} = 0.595 f_{pk} \text{ (Initiale Vorspannung } \sigma_{p0} = 0.7 f_{pk} \text{)} \\ \text{und } A_p &= 4 \cdot 150 \, \text{mm}^2 = 600 \, \text{mm}^2 \end{split}$$

$$\rightarrow a_{p,erf} = \frac{p_{\infty}}{0.595 f_{pk}} = 1077 \frac{\text{mm}^2}{\text{m}}$$

Wahl: Spanngliedeinheit VSL 6-4 @ 600 mm mit $a_p = \frac{600}{0.6} = 1000 \frac{\text{mm}^2}{\text{m}}$

NB: Für eine volle Vorspannung ist etwas weniger Spannkraft erforderlich als für Lastausgleich.

VSL Doku

S.5

S.6

S.14

S.21

VSL Doku S.14

SIA 262 Tab. 16+18 VSL, S.14

VSL, S.32

Da es sich um ein Flachhüll-rohr handelt, wird die Exzentrizität As in erster Näherung vernachlässigt.

Stahlbeton II	Frühjahrssemester	Seite 3/6
Kolloquium 1	Musterlösung	an/ 27.01.2022 amr/25.07.2023(rev.) mep/27.02.2024 (rev.)

c) Spannungsverteilung

Zusammenfassung Vorspannkonzept:

$$\begin{split} \sigma_{p0} &= 0.7 \, f_{pk} = 1302 \, \text{MPa} \; ; \qquad p_0 = \sigma_{p0} \cdot a_p = 1302 \, \text{kN/m} \\ \sigma_{p\infty} &= 0.85 \sigma_{p0} = 1107 \, \text{MPa} \; ; \qquad p_{\infty} = \sigma_{p\infty} \cdot a_p = 1107 \, \text{kN/m} \end{split}$$
Initiale Vorspannung:

Langzeitwert:

 $e\left(x = -\frac{L}{2}\right) = e_A = e - \frac{h}{2} = -32 \,\text{mm}$ Maximale Exzentrizitäten:

 $e(x=0) = e_F = \frac{h}{2} - c_{nom,p} - \frac{h_{\emptyset}}{2} = 119 \,\text{mm}$

Brutto-Querschnittswerte:

$$a_{c} = h \cdot \overline{b} = 320'000 \frac{\text{mm}^{2}}{\text{m}}$$

$$i_{c} = \frac{h^{3} \cdot \overline{b}}{12} = 2.731 \cdot 10^{9} \frac{\text{mm}^{4}}{\text{m}}$$

Spannungen am oberen und unteren Querschnittsrand:

$$\begin{bmatrix} \sigma_{c,sup} \\ \sigma_{c,inf} \end{bmatrix} = -\frac{p}{a_c} + \frac{m + m_{zw} - p \cdot e}{i_c} \cdot \begin{bmatrix} z_{sup} \\ z_{inf} \end{bmatrix}$$

Für statisch bestimmte Systeme: $m_{zw} = 0$

(i) Auflager, t = 0, (g_{0k}, p_0) :

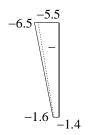
$$\begin{bmatrix} \sigma_{c,sup} \\ \sigma_{c,inf} \end{bmatrix} = -\frac{p_0}{a_c} + \frac{-p_0 \cdot e_A}{i_c} \cdot \begin{bmatrix} -h/2 \\ h/2 \end{bmatrix} = \begin{bmatrix} -6.5 \\ -1.6 \end{bmatrix} MPa$$

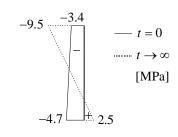
(ii) Auflager, $t \rightarrow \infty$, $(g_{0k} + g_{1k} + q_k, p_{\infty})$:

$$\begin{bmatrix} \sigma_{c,sup} \\ \sigma_{c,inf} \end{bmatrix} = -\frac{p_{\infty}}{a_c} + \frac{-p_{\infty} \cdot e_A}{i_c} \cdot \begin{bmatrix} -h/2 \\ h/2 \end{bmatrix} = \begin{bmatrix} -5.5 \\ -1.4 \end{bmatrix} MPa$$

(iii) Feldmitte, $t = 0, (g_{0k}, p_0)$:

$$\begin{bmatrix} \sigma_{c,sup} \\ \sigma_{c,inf} \end{bmatrix} = -\frac{p_0}{a_c} + \frac{m_{max} (g_{0k}) - p_0 \cdot e_F}{i_c} \cdot \begin{bmatrix} -h/2 \\ h/2 \end{bmatrix} = \begin{bmatrix} -3.4 \\ -4.7 \end{bmatrix} MPa$$


(iv) Feldmitte, $t \to \infty$, $(g_{0k} + g_{1k} + q_k, p_{\infty})$:


$$\begin{bmatrix} \sigma_{c,sup} \\ \sigma_{c,inf} \end{bmatrix} = -\frac{p_{\infty}}{a_c} + \frac{m_{max} \left(g_{0k}, g_{1k}, q_k\right) - p_{\infty} \cdot e_F}{i_c} \cdot \begin{bmatrix} -h/2 \\ h/2 \end{bmatrix} = \begin{bmatrix} -9.5 \\ 2.5 \end{bmatrix} \text{MPa}$$

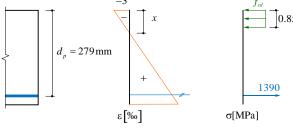
Stahlbeton II	Frühjahrssemester	Seite 4/6
Kolloquium 1	Musterlösung	an/ 27.01.2022 amr/25.07.2023(rev.) mep/27.02.2024 (rev.)

Auflager:

Feldmitte:

- Die mittlere Vorspannung bei t=0 ist mit $\sigma_{c0,m}=-4.1 \mathrm{MPa}$ für einen Hochbau ziemlich gross.

- Unter ständigen Lasten $\left(g_{0k}+g_{1k}\right)$ bleibt die Platte auch für $t\to\infty$ komprimiert:


$$\sigma_{c.inf} = -\frac{p_{\infty}}{a_{\infty}} + \frac{m_{max} \left(g_{0k} + g_{1k}\right) - p_{\infty} \cdot e_F}{i_{\infty}} \cdot \frac{h}{2} = -0.6 \text{MPa}$$

→ Somit herrscht volle Vorspannung für ständige Lasten.

- Unter Nutzlasten dekomprimiert die Platte für $t \to \infty \left(\sigma_{c,inf} > 0\right)$, bleibt aber wegen der geringen Zugspannungen $\left(\sigma_{c,inf} < f_{ctm}\right)$ weitgehend ungerissen.
- Da es sich bei f_{ctm} jedoch um einen Mittelwert mit einer grossen Streuung handelt, müsste streng genommen zusätzlich ein Spannungsnachweis am gerissenen QS geführt werden.
- Die Druckfestigkeit des Betons wird nirgends überschritten: $|\sigma_{c,min}| = 9.5 \,\mathrm{MPa} < f_{cd} = 20 \,\mathrm{MPa}$

d) Tragsicherheit

Biegung: $m_d = 324 \frac{\text{kNr}}{\text{m}}$

$$\begin{array}{c}
f_{cd} \\
\hline
1390
\end{array}$$

$$0.85x = \frac{a_p \cdot f_{pd}}{\overline{b} \cdot f_{cd}} = 69.5 \,\text{mm mit } f_{pd} = \frac{f_{p0.1k}}{\gamma_s} = \frac{1600}{1.15} = 1390 \,\text{MPa}$$

$$\frac{x}{d} = 0.29 \le 0.35 \rightarrow \text{ i.O.}$$

$$\varepsilon_p = \frac{\sigma_{p0}}{E_p} + 3\% \cdot \frac{d_p - x}{x} = 6.68\% + 7.24\% = 13.92\%$$

$$\varepsilon_{py} = \frac{f_{p0.1k}}{E_{\perp}} = 8.21\% < \varepsilon_p = 13.92\% < \varepsilon_{ud} = 2\% \rightarrow \text{Duktiles Versagen, i.O.}$$

$$z = d_p - \frac{0.85x}{2} = 244.3 \,\text{mm}$$

$$m_{Rd} = z \cdot f_{pd} \cdot a_p = 340 \frac{\text{kNm}}{\text{m}} > m_d = 324 \frac{\text{kNm}}{\text{m}} \rightarrow \text{i.O.}$$

Schlaffe Bewehrung vernachlässigt

SIA 262 Tab.7

Dehnungen im Beton durch Vorspannung (bei Zeitpunkt Injektion) vernachlässigt

SIA 262 Tab.10

Stahlbeton II	Frühjahrssemester	Seite 5/6
Kolloquium 1	Musterlösung	an/ 27.01.2022 amr/25.07.2023(rev mep/27.02.2024 (re
Querkraft: $v_d = v_{max} - \frac{d_p}{2} \cdot q_d = 106 \frac{\text{kN}}{\text{m}}$		SIA 262 4.3.3.2
Pfeilhöhe in Funktion von x: $f(x) = \frac{4f_0 \cdot (l^2/4 - x^2)}{l^2}$	$\xrightarrow{2} \rightarrow f'(x) = -\frac{8f_0 \cdot x}{l^2}$	
$f'\left(\frac{l}{2} - \frac{d_p}{2}\right) = \tan\beta_p = \frac{8f_0}{l^2} \cdot \left(\frac{l - d_p}{2}\right) = 49.24$ $\rightarrow \beta_p = 2.8^\circ$	mrad	
Beitrag der Vorspannung zum Querkraftwiderstand	$p_{\infty} \cdot \sin \beta_p = 54.5 \frac{\text{kN}}{\text{m}}$	
Querkraft im Beton: $v_{dc} = v_d - p_{\infty} \cdot \sin \beta_p = 51.5 \frac{\text{kN}}{\text{m}}$		
Querkraftwiderstand einer Platte ohne Querkraftbev	vehrung:	Vorgriff au
$\varepsilon_v = \frac{f_{sd}}{E_s} \cdot \frac{m_d}{m_{Rd}} = \frac{f_{sd}}{E_s} \cdot 1 = 2.12\%$ (konservative))	VL 7.4, Foli 9 ff.
$k_{g} = \frac{48}{16 + D_{max}} = 1.5$		
$k_d = \frac{1}{1 + \varepsilon_v \cdot d_p \cdot k_g} = 0.530$		
$v_{Rd} = k_d \cdot \tau_{cd} \cdot d_p = 162 \frac{\text{kN}}{\text{m}} > v_{dc} = 51.5 \frac{\text{kN}}{\text{m}}$	→ i.O.	
e) Durchbiegungen		
Betrachtung als Anker- und Umlenkkräfte		
BZ	ÜG	
p u $\downarrow p$ $\downarrow q$ $\downarrow p$ $\downarrow q$ $\downarrow p$ $\downarrow q$ $\downarrow p$		
<i>→</i>	<i></i>	
$m(q)$ $+$ $ql^2/8$	\overline{m}	
$m(u) \frac{qt/8}{-ul^2/8 = -p \cdot f_0}$	l/4	
$m(p,e_{\scriptscriptstyle A})$ $+$ $p\cdot e_{\scriptscriptstyle A} $		
Kraftmethode:		
$w = \int \frac{m(q)\overline{m}}{EI} dx + \int \frac{m(u)\overline{m}}{EI} dx + \int \frac{m(p,e_A)\overline{m}}{EI} dx$		
$= \frac{l}{EI} \left(\frac{5}{12} \cdot \frac{ql^2}{8} \cdot \frac{l}{4} - \frac{5}{12} \cdot \frac{ul^2}{8} \cdot \frac{l}{4} + \frac{1}{2} \cdot p \cdot e_A \cdot \frac{l}{4} \right)$		
$=\frac{5\cdot (q-u)\cdot l^4}{384EI}+\frac{p\cdot e_A \cdot l^2}{8EI}$		

Stahlbeton II		Frühjahrssemester	Seite 6/6
Kolloquium 1		Musterlösung	an/ 27.01.2022 amr/25.07.2023(rev.) mep/27.02.2024 (rev
(i) $t = 0, (g_{0k}, p_0)$: $u_0 = \frac{8 \cdot p}{1}$	$\frac{p_0 \cdot f_0}{1} = 10.9 \frac{\text{kN}}{10.0} \text{s}$		
	<i>i</i> 111		
$w_0 = \frac{5 \cdot (g_{0k} - u_0) \cdot l^4}{384 E_{cm} \cdot i_c} +$	$\frac{p_0 \cdot \mathbf{e}_A \cdot i}{8E_{cm} \cdot i_c} = -0.3 \mathrm{mm}$		
(ii) $t \to \infty$, $(g_{0k} + g_{1k}, p_{\infty})$: u	$u_{\infty} = 0.85u_0 = 9.3 \frac{\text{kN}}{\text{m}^2}$		
$w = \frac{5 \cdot (g_{0k} + g_{1k} - u_{\infty})}{1 + g_{0k}}$	$) \cdot l^4 + p_{\infty} \cdot e_A \cdot l^2 - 27.0 \mathrm{m}$	m	
$384 \frac{E_{cm}}{1+\varphi} \cdot i_c$	$\frac{\left \cdot\right ^4}{8 \frac{E_{cm}}{1+\varphi} \cdot i_c} = 27.0 \mathrm{m}$		φ = 2
(iii) Kurzfristige Nutzlast: Δ	$\Delta w = \frac{5 \cdot q_k \cdot l^4}{384 \cdot E_{cm} \cdot i_c} = 8.8 \mathrm{mm}$		
Nachweise SIA 260, Tab.2 &		-	Quasi- ständiger
Funktionstüchtigkeit:	$w = w_{\infty} + \psi_2 \cdot \Delta w \cdot (1 + \varphi)$	$+ (\psi_1 - \psi_2) \cdot \Delta w = 36.7 \text{mm} \approx \frac{l}{350} = 34 \text{mm}$	Anteil der Nutzlast kriechwirksam
	→ knapp nicht i.O.		KITECHWITKSAIII
Komfort:	$w = \psi_1 \cdot \Delta w = 4.4 \mathrm{mm} < \frac{1}{3}$	$\frac{l}{350} = 34 \text{mm} \rightarrow \text{i.O.}$	
Aussehen:	$w = w_{\infty} + \psi_2 \cdot (1 + \varphi) \cdot \Delta w$	$= 34.9 \mathrm{mm} < \frac{l}{300} = 40 \mathrm{mm} \rightarrow \mathrm{i.O.}$	
		ler Funktionstüchtigkeit ist knapp nicht erfüllt. bschätzungen wird dies hier akzeptiert.	