Support and articulation

(Lagerung und Dilatation)

Support and articulation

Introduction

Usually, a bridge consists of a

- superstructure (deck, girder) that is supported by the
- substructure (abutments, piers, foundations)

The connection of superstructure and substructure can be

- monolithic or
- articulated using bridge bearings and expansion joints

The analysis of super- and substructure cannot be completely separated (particularly in the transverse direction), even if articulated connections are provided.

Monolithic connections:

- transfer vertical and horizontal loads as well as bending moments (generally all six stress resultants of a linear member)
- impede the corresponding movements and rotations of the superstructure
- are to be used where possible, rather than providing bearings and expansion joints (reasons see following slides)

The terms "superstructure" and "substructure" are also usual in other typologies, where the super- and substructure include further components, for example:

Arch bridges

- \rightarrow superstructure = deck, girder, spandrel columns and arch
- \rightarrow substructure = abutments, arch abutments, foundations

Cable-stayed bridges

- → superstructure = deck, girder, stay-cables (ev. pylon: see notes & photo on next slide)
- → substructure = abutments, piers, foundations, backstay anchorage, and pylon

Super- and substructure cannot always be clearly distinguished (which is merely a linguistic problem, analysis is coupled anyways):

- arch bridges with bearings on top of spandrel columns:
 ... deck and girder alone are often referred to as "superstructure"
- strut frame bridges (photo):
 - ... struts = superstructure ("arch") or substructure ("inclined pier")
- frame bridges / girder bridges with integral abutments:
 - ... abutment walls = super- and substructure at the same time

The terms "superstructure" and "substructure" are also usual in other typologies, where the super- and substructure include further components, for example:

Arch bridges

- \rightarrow superstructure = deck, girder, spandrel columns and arch
- \rightarrow substructure = abutments, arch abutments, foundations

Cable-stayed bridges

- → superstructure = deck, girder, stay-cables (ev. pylon: see notes & photo)
- → substructure = abutments, piers, foundations, backstay anchorage, and pylon

Super- and substructure cannot always be clearly distinguished (which is merely a linguistic problem, analysis is coupled anyways):

- arch bridges with bearings on top of spandrel columns:
 ... deck and girder alone are often referred to as "superstructure"
- strut frame bridges:
 - ... struts = superstructure ("arch") or substructure ("inclined pier")
- frame bridges / girder bridges with integral abutments:
 - ... abutment walls = super- and substructure at the same time

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Bridge bearings provide articulation; usually they

- transfer vertical loads and hence impede vertical movements of the superstructure (= provide support)
- enable rotations of the superstructure and hence do not transfer significant bending moments

(if required, rotational fixity is usually provided by two separate bearings whose reactions generate a force couple, e.g. two vertical bearings resisting torsion)

Bridge bearings may be horizontally fixed or movable in one or both directions. In the corresponding direction(s):

- fixed bearings transfer forces and impede movements of the superstructure
- movable bearings enable movements of the superstructure without significant restraint (friction only)

Often, horizontal fixity is referred to the longitudinal and transverse (lateral) direction. This is suitable in most cases, particularly straight bridges, but may not be useful in curved bridges.

Bridge expansion joints ensure the serviceability and user comfort at girder ends by accommodating

- relative displacements
- relative rotations

between a bridge girder and the adjoining road or railway track, or between parts of a bridge separated by joints.

For centuries, stone and timber bridges were built without bearings nor expansion joints.

These bridges were able to cope with expansion and contraction caused by temperature and humidity (timber)

- by change of shape (e.g. high arches absorbing contraction by increase in rise)
- a multitude of small joints opening and closing
- lower material stiffness

Modern high strength materials, such cast iron and later steel and reinforced concrete, enabled

- more slender structures
- long, jointless girder bridges with a very high axial stiffness
- \rightarrow restraining the expansion and contraction of such girders
 - ... generates restraint stresses
 - ... but completely impeding expansion and contraction would require huge forces that usual abutments cannot resist
- \rightarrow expansion and contraction of the bridge girder
 - ... usually cannot be avoided
 - ... may cause damage to abutments that are not designed to absorb these movements

Hence, since the early days of iron bridges, most bridge girders were supported on bearings to allow unrestrained thermal expansion and contraction of the girders in order to:

- avoid damage to abutments due to imposed movements
- avoid restraint in bridge girder due to restrained deformations

For example, the Britannia bridge (Robert Stephenson 1846/50, replaced 1972 after fire), used cast iron roller bearings on all but the central towers to allow sliding of the box girder. In the following decades,

→ providing statically determinate horizontal supports to bridge girders became common engineering practice

This paradigm was fostered by the advent of prestressing technology, since

- prestressing results in a contraction of the girder, causing tension if restrained
- shrinkage and creep of concrete are causing further contraction
- → pioneers of prestressing were very concerned that the beneficial effect of prestressing was lost (see notes)

Another reason for providing bridge bearings was that

- the restraint forces in bridge girders, whose expansion or contraction is impeded by the substructure (abutments, piers), are difficult to quantify,
- particularly since they depend on soil-structure interaction
- → such analyses are perfectly feasible today but, they were beyond reach in the 19th century using hand calculations (e.g. modelling the soil stiffness by elastic springs means adding a degree of statical indeterminacy per spring).
- Suitable computational tools became available in the 1950s, particularly through the Finite Element Method (civil engineers significantly contributed to the development of this method, together with aeronautical engineers, and structural analysis was a first field of application of the FEM) but ...

Another reason for providing bridge bearings was that

- the restraint forces in bridge girders, whose expansion or contraction is impeded by the substructure (abutments, piers), are difficult to quantify,
- particularly since they depend on soil-structure interaction
- \rightarrow such analyses are perfectly feasible today but, they were beyond reach in the 19th century using hand calculations (e.g. modelling the soil stiffness by elastic springs means adding a degree of statical indeterminacy per spring).
- Suitable computational tools became available in the 1950s, particularly through the Finite Element method (civil engineers significantly contributed to the development of this method, together with aeronautical engineers, and structural analysis was a first field of application of the FEM) but
- → user-friendly software programs running on powerful yet affordable computers, taken for granted as a standard tool of structural engineers today, only became reality in the 1990s.

On the other hand:

- bridge girders provided with a horizontally statically determinate bearing layout can be analysed independently of the substructure
- supports facilitate the efficient erection of girder bridges
- → bridges provided with expansion joints and bearings, such that the girder can expand and contract freely, became very popular (particularly after World War II, when many developed countries were extending their motorway networks)
- → still today, many textbooks and guidelines worldwide presume implicitly that bridge girders are always articulated, i.e. provided with statically determinate horizontal supports

However, this paradigm is outdated, particularly for road bridges where de-icing salts are used – see following slides. Rather:

- the optimum support and articulation concept must be carefully chosen in the conceptual design phase for each bridge
- in many cases, avoiding expansion joints and bearings is preferable

26.03.2024

The long-term experience with jointed bridges is extremely negative

- particularly in road bridges exposed to de-icing salts
- main problem = expansion joints in road bridges
- leaking expansion joints are a principal cause of bridge deterioration
- \rightarrow may cause severe damage to the bridge structure, e.g.
- → trigger corrosion of bearings and anchorages of prestressing cables near the joints

Furthermore, expansion joints are problematic regarding

- user comfort
- noise emissions
- robustness (e.g. earthquake resistance)

particularly if bearings and expansion joints are provided over intermediate supports.

This is different in railway bridges (see notes below and bearing layout principles).

Damage caused by leaking expansion joints can be avoided if they

- are adequately designed and detailed
- ensure a controlled evacuation of runoff water even if the joints are leaking (see photos and section on abutments)

However, adequately detailed expansion joints (and the maintenance chamber required) are expensive but still

- require maintenance
- have a relatively short service life
- cause noise and harm user comfort

For these reasons, there is a strong tendency today to

- \rightarrow avoid expansion joints in new road bridges
- → eliminate expansion joints at the time of bridge rehabilitation

Damage caused by leaking expansion joints can be avoided if they

- are adequately designed and detailed
- ensure a controlled evacuation of runoff water even if the joints are leaking (see photos and section on abutments)

However, adequately detailed expansion joints (and the maintenance chamber required) are expensive but still

- require maintenance
- have a relatively short service life
- cause noise and harm user comfort

For these reasons, there is a strong tendency today to

- \rightarrow avoid expansion joints in new road bridges
- → eliminate expansion joints at the time of bridge rehabilitation

In modern bridge design, rather than blindly following the obsolete paradigm of horizontally isostatic support:

- → the optimum support and articulation concept must be carefully chosen in the conceptual design phase for each bridge
- \rightarrow expansion joints and bearings should be avoided

Many solutions are possible, that can be categorised based on

- the type of bridge end (see figure)
 - ... integral (neither expansion joint nor bearing)
 - ... semi-integral (bearing only, joint only in exceptional cases)
 - ... jointed (with expansion joint)
- the continuity of the girder
 - ... continuous (usual)
 - ... jointed (avoid, except in long railway viaducts)
- the connections of girder and piers
 - ... monolithic (preferred)
 - ... articulated with concrete hinges (quasi-monolithic)
 - ... articulated with bearings

Integral bridge ends (neither expansion joint nor bearing)

Semi-integral bridge ends (bearing only)

Jointed bridge ends (with expansion joint and bearing)

The support and articulation concept of a bridge can then be classified by

- the type of bridge ends (integral or articulated) and
- the continuity of the girder (with or without joints)
- the connections of girder to substructure (monolithic or articulated)

In this lecture, the following definitions are used:

Integral bridge

Semi-integral bridge

Jointed bridge / bridge with expansion joints

Support and articulation

Girder deformations and movements

Support and articulation – Girder deformations

Expansion and contraction of bridge girders is caused by

- applied loads, particularly longitudinal prestressing
- temperature variation in all materials
- moisture variation in timber and concrete ("drying shrinkage")
- shrinkage of concrete (autogenous and chemical) and FRP
- creep of concrete, timber and FRP

It should be observed that:

- expansion and contraction due to temperature variation, humidity changes and shrinkage are considered to be independent of applied stresses
- contraction due to prestressing (and hence creep) is approximately proportional to the applied stresses
- shrinkage and creep are time-dependent effects subject to high uncertainty (large scatter of values)
- in concrete, contraction due to moisture reduction is conventionally included in the shrinkage deformations, together with autogenous and chemical shrinkage

Support and articulation – Girder deformations

Temperature variation

- uniform temperature variations of bridge girders
 - ... depend on the location of the bridge (climate)
 - ... are greater than ambient temperature variations
- in an unrestrained bridge girder, a uniform temperature difference ΔT causes a thermal strain proportional to ΔT and to the coefficient of thermal expansion α_T :

 $\varepsilon_T = \alpha_T \cdot \Delta T$

- for steel and concrete $\alpha_T = 10.10^{-6}$ /K may be adopted (despite variations in reality, see notes)
- for timber, thermal effects are subordinate (moisture dominates) \rightarrow many codes do not provide values for α_{T}
- for the choice of the support and articulation concept, differential temperature effects (temperature differences between top and bottom of girders) can be neglected
- the table illustrates uniform temperature differences and resulting thermal strains to be used in Swiss bridges (ASTRA) when determining the movement capacity of bearings and expansion joints (factor γ_F see next slide)

Thermal effects for design of bearings and expansion joints in Swiss road bridges (*)	Superstructure type		
	steel	composite	concrete
temperature variation ΔT_{1k} (SIA 261)	± 30°C	± 25°C	± 20°C
50% increase for design of bearings and expansion joints (SIA 261) (***)	± 15°C	± 12.5°C	± 10°C
ΔT_k to consider $\alpha_T \Delta T_k$ to consider	± 45°C ± 450⋅10 ⁻⁶	± 37.5°C ± 375⋅10 ⁻⁶	± 30°C ± 300⋅10 ⁻⁶
$\gamma_{F} \cdot \alpha_{\mathcal{T}} \Delta T_k$ (*)	± 675·10 ⁻⁶	± 563·10 ⁻⁶	± 450·10 ⁻⁶

(*) reference temperature +10°C unless otherwise specified

- (**) according to ASTRA guideline 12004: γ_F =1.5 if temperature is the leading variable action, accounts for uncertainties in α_{τ} , position of fixed point, temperature at installation etc.
- (***) accounts for difference between ambient temperature variation and bridge temperature variation, see also notes

Support and articulation – Girder deformations

Concrete shrinkage and creep

- shrinkage strains ε_{cs} are independent of applied load
- creep strains $\varepsilon_{cc} = \phi \cdot \varepsilon_{c,el}$ are proportional to
 - ... the applied stresses $\sigma_{c,e'} = E_c \cdot \varepsilon_{c,e'}$ and
 - \ldots the creep coefficient $\boldsymbol{\phi}$
- shrinkage and creep develop over time and
 ... occur faster in thin members (less effect on creep)
 - ... are larger in lower strength concrete
 - ... are lower at high relative humidity RH (CH: outdoor) ... cannot be predicted precisely
- Typical values for Swiss bridges (C30/37, RH \approx 80%) are $\epsilon_{csk} \approx -300 \cdot 10^{-6}$ and $\phi_{csk} \approx 1.8$.
- relevant strains: occurring after the installation of bearings resp. expansion joints (typically after prestressing), or after installing backfill and pavement in integral bridges.
- the table illustrates the calculation of relevant strains according to ASTRA Guideline 12004 as an example (not for direct use), including the load factor γ_F to cover the uncertainties (α_T, ε_{cs}, φ, E_c, movement length, ...)

Typical values for preliminary design of bearings and	Superstructure type		
	steel	composite	Concrete
Swiss road bridges (*)	[·10 ⁻⁶]	[·10 ⁻⁶]	[·10 ⁻⁶]
uniform temperature difference $\alpha_T \Delta T_k$	±450 ±450	±375 ±375	±300 ±300
shrinkage ε _{csk} (**)	n/a	0 (see notes)	-300 -150
prestressing $\epsilon_{c,el}$ ($\sigma_{cp} \approx 3.5 \text{ MPa}$)	n/a	n/a	-100 0
creep ε _{cc} (**)	n/a	n/a	-180 -120
$\alpha_{T}\Delta T_{k} + \varepsilon_{csk} + \varepsilon_{c,el} + \varepsilon_{cc}$	±450 ±450	±375 ±375	+300 /-880 +300 /-570
$\frac{\gamma_{F}\alpha_{T}\Delta T_{k} + \varepsilon_{csk} + \varepsilon_{c,el} + \varepsilon_{cc}}{\gamma_{F}(\alpha_{T}\Delta T_{k} + \varepsilon_{csk} + \varepsilon_{c,el} + \varepsilon_{cc})}$	±675 ±675	±563 ±563	+450 /–1030 +450 /–855

(*) reference temperature +10°C, assuming γ_F =1.5 (temperature is the leading variable action) and neglecting shrinkage in composite girder

(**) assuming $\varepsilon_{csk} \approx -300 \cdot 10^{-6}$ and $\phi_{csk} \approx 1.8$ and that prestressing, 50% of shrinkage and 33% of creep occur before installation of expansion joints

Support and articulation – Girder movements

Movements of the bridge girder

- temperature variations, shrinkage, prestressing, creep and moisture variation cause strains of the girder
- order of magnitude of characteristic total strains:
 - ... composite $\varepsilon_k \approx 750.10^{-6} (\pm 375)$
 - ... steel $\varepsilon_k \approx 900.10^{-6} (\pm 450)$
 - ... concrete $\varepsilon_k \approx 1200 \cdot 10^{-6} (+300/-900)$ for bearings $\varepsilon_k \approx 900 \cdot 10^{-6} (+300/-600)$ for exp. joints
- these strains cause movements of the girder, that increase in proportion with the distance ("movement length") from the point of zero movement ("fixed point")
- unless the girder is fixed longitudinally at an abutment, the position of the fixed point is not exactly known
- the relevant movement lengths vary in staged construction, but only movements occurring after the installation of bearings and joints (or backfill and pavement in integral abutments) need to be considered
- → consider construction process (allocating adequate reserve capacities, particularly in case of bearings and expansion joints, see substructure chapter for details)

Movements due to girder contraction (schematic, bridge longitudinally stabilised by piers)

Support and articulation – Girder movements

Movements of the bridge girder

- temperature variations, shrinkage, prestressing, creep and moisture variation cause strains of the girder
- order of magnitude of characteristic total strains:
 - ... composite $\varepsilon_k \approx 750.10^{-6} (\pm 375)$
 - ... steel $\varepsilon_k \approx 900.10^{-6} (\pm 450)$
 - ... concrete $\varepsilon_k \approx 1200 \cdot 10^{-6} (+300/-900)$ for bearings $\varepsilon_k \approx 900 \cdot 10^{-6} (+300/-600)$ for exp. joints
- these strains cause movements of the girder, that increase in proportion with the distance ("movement length") from the point of zero movement ("fixed point")
- unless the girder is fixed longitudinally at an abutment, the position of the fixed point is not exactly known
- the relevant movement lengths vary in staged construction, but only movements occurring after the installation of bearings and joints (or backfill and pavement in integral abutments) need to be considered
- → consider construction process (allocating adequate reserve capacities, particularly in case of bearings and expansion joints, see substructure chapter for details)

Movements due to girder contraction (schematic, bridge longitudinally stabilised by piers)

(due to scatter in in soil parameters, cracking of piers, ...)

Support and articulation – Girder movements

Movements of bridge girder

- relevant movements of the girder are also caused by ... horizontal loads (braking, acceleration, ...)
 - ... vertical loads in arches, frames, ...
- these loads cause a rigid body motion of the girder unless the girder is fixed longitudinally at an abutment

→ total girder movements = deformations (expansion / contraction) + rigid body movements of girder

- → the total movements are relevant for the design of the piers (e.g. monolithic connection of short piers near abutments possible?) and integral bridge ends
- → in jointed bridges, movable bearings and expansion joints need to be provided with sufficient movement capacity to accomodate the total movements with adequate reserves (e.g. using a load factor γ_F as required by ASTRA)
- → the total characteristic movements of the bridge ends are the basic criterion for the suitability of integral and semi-integral bridge ends (see integral bridges)

Movements due to girder contraction (schematic, bridge longitudinally stabilised by piers)

Support and articulation

Jointed bridges – Bearings and expansion joints

Expansion joints and bearings cannot be avoided in all cases. In particular, a horizontal articulation ("dilatation") is required

- in long bridges (limits see integral bridges)
- at low abutments or short piers on stiff soil
- if ductility of the girder is a concern (existing bridges, steel bridges with slender elements, timber bridges)

In such cases, bearings and expansion joints are used to provide articulation; in particular to

- minimise restraint to expansion and contraction of the bridge girder,
- accommodate the movements of the bridge girder with adequate reserve capacity (bearings and expansion joints)
- enable rotations of the girder with minimum restraint (if rotation is intentionally impeded, such as torsional rotation restraint, two bearings are usually provided → force couple)

At abutments, movements are usually guided in one direction, since multiaxial movements require more complicated expansion joints (except at small movements where a single profile joint is sufficient).

Bearings and expansion joints – if provided – are **decisive** for the structural safety, serviceability and durability of bridges

- → classic textbook treatment as "bridge accessories" or "bridge equipment" is misleading (see photo and notes on next slide)
- → bearings and expansion joints merit the same degree of attention of bridge engineers as the bridge structure itself despite the fact that bridge bearings and expansion joints are standardised today (see notes), which allocates much of the responsibility for their proper functioning with the supplier.

The treatment of bearings and expansion joints as "accessories", dealt with as an afterthought of designers at a late design stage, may cause severe problems.

This is even more critical if bearings and expansion joints are located at the demarcation of responsibilities of different design teams or even firms, e.g. between two parts of a long bridge, or – more often – between substructure and superstructure.

The following must be kept in mind when designing bearings and expansion joints:

- → Meticulously review (project-specific) performance and testing requirements by owner / supervisory agency / code)
- → Confirm that the supplier has corresponding approvals early in the process (specific additional testing and certification takes much time)
- → Allocate sufficient space for bearings and expansion joints in early design stages, accounting for possible changes of the supplier (products may differ substantially in size)
- → Provide access and sufficient clearances for maintenance and exchange of bearings and, in particular, expansion joints: They will need to be exchanged several times during the lifespan of the bridge
- → Check structural safety of substructure and superstructure (diaphragms) for the loads during bearing replacement (flat jacks will support the bridge at other locations than the bearings)
- → Consider all construction stages and time-dependent effects, as well as the installation temperature, when setting the expansion joints and bearings during installation (there is no safety factor on geometry)

The following must be kept in mind when designing bearings and expansion joints:

- → Meticulously review (project-specific) performance and testing requirements by owner / supervisory agency / code)
- → Confirm that the supplier has corresponding approvals early in the process (specific additional testing and certification takes much time)
- → Allocate sufficient space for bearings and expansion joints in early design stages, accounting for possible changes of the supplier (products may differ substantially in size)
- → Provide access and sufficient clearances for maintenance and exchange of bearings and, in particular, expansion joints: They will need to be exchanged several times during the lifespan of the bridge
- → Check structural safety of substructure and substructure (diaphragms) for the loads during bearing replacement (flat jacks will support the bridge at other locations than the bearings)
- → Consider all construction stages and time-dependent effects, as well as the installation temperature, when setting the expansion joints and bearings during installation (there is no safety factor on geometry)

Support and articulation

Jointed bridges – Bridge bearings

Support and articulation – Bridge bearings

Many different types of bridge bearings exist. In older bridges, mainly steel bearings were used, such as:

- line or point rocker bearings
- roller bearings
- pin / leaf bearings
- ..

Many of these bearing types accommodated rotation only around one axis

- → had to be positioned with care to avoid unwanted moment restraint of single bearings (usually in pairs of two along an intended axis of rotation)
- \rightarrow on older drawings, bearing rotation axes were indicated (with a solid line) ...

... but most modern bearings accommodate rotations around all axes without relevant restraint \rightarrow rotation axes are no longer indicated usually (see e.g. EN1337-1)

Support and articulation – Bridge bearings

Today, the following types of bridge bearings (see following slides) are mainly used:

- Elastomeric bearings («Elastomerlager»)
- Pot bearings («Topflager»)
- Spherical bearings («Kalottenlager»)
- Guide bearings («Führungslager»)

All of these enable rotations around all axes with little restraint. All of these, except the guide bearings, provide vertical support and are available in configurations that

- accommodate multiaxial horizontal movements with little (i) restraint (without providing horizontal fixity)
- accommodate uniaxial horizontal movements with little (ii) restraint (while providing fixity in the other direction)
- provide horizontal fixity (iii)

On bearing layouts drawings, the symbols shown on the right are commonly used today; see EN1337-1 for more details and other types of bearings.

For hinged connections, concrete hinges are a viable alternative to mechanical bearings, see also following slides.

two axes

with restraint for

Guide bearing with restraint for one axis

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures
Elastomeric bearings ("Blocklager", "Verformungslager")

- accommodate moderate rotations with low restraint by deformation of the elastomer
- ensure a reasonably uniform bearing pressure
- accommodate horizontal movements with little restraint by shearing of the elastomer (unless guided)
- need only be anchored if a minimum contact pressure cannot be guaranteed
- → economic solution for small movements (variants with additional sliding plates for larger movements shown on previous slide are unusual → pot bearings)

The following should be observed:

- non-anchored bearings can be replaced more easily; if anchored, make sure replacement is possible
- movement and rotation capacity depend on level of applied load (lower at higher vertical load)
- support reactions are eccentric (and slightly inclined)
 → pot bearings preferred on piers
- may be used for seismic isolation (for high seismicity: "lead rubber bearings" with higher damping)

top anchor plate (with sliding material on two side faces in uniaxial bearings)

laminated bearing pad (with steel plates for fixation to top/bottom plates)

bottom anchor plate with guides (in uniaxial bearings only)

anchored bearing pad (as above)

- steel plate for fixation
- alternating layers of elastomer and steel plates (fully embedded)
- steel plate for fixation

bearing pad relying on friction

- checkerboard or rubber plate
- alternating layers of elastomer and steel plates (fully embedded)
- checkerboard or rubber plate

26.03.2024

Pot bearings ("Topflager")

- accommodate rotations by deformation of an elastomeric disc subjected to high pressure (behaving like a fluid) in a pot below the piston
- ensure uniform bearing pressure (elastomeric disc)
- may accommodate horizontal movements by sliding of a steel plate on a sliding pad on top of the piston
- are always anchored to the structure
- \rightarrow adequate solution for moderate-large movements

The sliding material behaviour is of particular interest:

- PTFE is subject to wear (mainly due to length and speed of movements, expected lifespan ≈ 10-20 km)
- the friction coefficient of PTFE is higher at low temperatures and significantly higher at low pressure (μ ≈ 3% for 30 MPa , 8% for 5 MPa)
 → do not use larger sliding bearings than required
- high-tech sliding materials (e.g. ROBOSLIDE ® developed by mageba) with improved characteristics (friction, wear) are available

sliding plate with anchors (sliding bearings only)

guide profiles (unidirectional sliding bearings only)

sliding pad fixed on piston (sliding bearings only)

piston (with sliding material on two side faces in uniaxial sliding bearings)

elastomeric disc (surrounded by sealing chain)

steel pot with anchors

In unidirectional sliding bearings, internal guides are also common (protruding from piston, indentation in sliding plate)

Spherical bearings ("Kalottenlager")

- accommodate rotations by sliding of a spherical cap in a concave plate, with sliding surfaces on top and bottom side
- ensure reasonably uniform bearing pressure by high precision contact surfaces and stiff plates
- may accommodate horizontal movements by sliding of a steel plate on the sliding pad on top of the cap
- are always anchored to the structure
- are smaller than pot or elastomeric bearings, but more expensive
- \rightarrow adequate solution if space is limited (e.g. on pier top)

The following should be observed:

- concrete strength of girder and substructure may be critical due to higher pressures (smaller dimensions)
- the rotation centre is between contact surfaces if two sliding planes are provided (as in figure; otherwise see notes)

sliding plate with anchors (sliding bearings only)

guide profiles (unidirectional sliding bearings only)

sliding pad fixed on top of spherical cap (sliding bearings only)

spherical cap ("Kalotte")

sliding coating on bottom of spherical cap

concave bottom plate with anchors (and sliding material on two side faces in uniaxial sliding bearings)

Concrete hinges ("Betongelenke")

- combine the advantages of monolithic connections and hinged connections:
 - ... are virtually maintenance-free
 - ... accommodate rotations (up to ca. 15 mrad)
- provide little restraint to rotation by reducing the contact area to a narrow throat ("Gelenkhals")
- resist very high axial loads due to multiaxial compressive stress state in the throat
- require less space than mechanical bearings
- → economic and durable solution for hinged connections with high vertical loads and limited space

The following should be observed:

- provide adequate transverse reinforcement to resist bursting stresses («Spreizkräfte»)
- dimensioning (vertical load, rotation capacity) currently relies on empirical rules from the 1950's
- mechanically based models and design rules are currently being developed

Bursting reinforcement

26.03.2024

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Special bearings

Many different types of bearings exist, that are useful for specific applications.

The following are illustrated on the right:

• Top: Guide bearings (photo: transverse horizontal restraint)

• Bottom: Uplift bearings

Special applications

Bearings may also be used to accommodate movements of the subsoil.

For example, the Ganter Bridge is provided with huge pot bearings at the pier base located on the left, unstable valley slope, that provide a hinged connection to the shaft foundation and would allow adjusting the (horizontal) position in case of excessive rock sliding.

During free cantilevering of the girder, the pier was fixed to the shaft foundation with concrete blocks and prestressing.

Since the bridge was designed such that fairly large movements can be accommodated without adjusting the bearings, only one adjustment was required to date (in 2006, according to information provided by mageba AG).

ETH Zürich | Chair of Concrete Structures and Bridge Design Bridge Design Lectures

Support and articulation

Jointed bridges – Expansion joints

Many different types of expansion joints exist, with significant differences depending on bridge use and movement capacity:

- in road bridges, expansion joints are the road surface, directly loaded by truck wheels and exposed to runoff water with chlorides
- \rightarrow very high demand (see also notes) on
 - ... strength, robustness (particularly against snow plough impact)
 - ... watertightness
 - ... user comfort and noise emissions
- in footbridges, loads are much less severe
- → simpler solutions possible (must avoid "bike traps")
- in railway bridges, the bridge expansion joints are not loaded by traffic and no de-icing salts are used
- \rightarrow simpler solutions possible for bridge expansion joints
- \rightarrow but railway track expansion devices are highly complex (\rightarrow avoid)

On the following slides, usual expansion joints for road bridges (roadway joints) are illustrated. Rail track expansion devices are not dealt with as they are not designed by bridge engineers (but: avoiding them is a goal of railway bridge support and articulation concepts).

26.03.2024

Flexible plug joint ("Fahrbahnübergang aus Polymerbitumen") (aka "Thorma Joint" in CH)

- are integrated in the pavement, without mechanical connection to the deck
- require no mechanical parts
- provide a smooth ride, with hardly any noise and good user comfort
- typical movement capacity: 30 mm (+20/-10 mm)
- \rightarrow only suitable for very small movements

- for such small movements, integral abutments without expansion joint are usually possible
- With internal stabilising elements, movement capacity would be up to 100 mm, but many clients (e.g. ASTRA) do not allow such joints (unsatisfactory experience)
- proper installation is decisive for durability
- suitable for repair of pavement cracks behind integral bridge ends or as replacement of mechanical joints in existing bridges with small movements

Single profile joint ("Fahrbahnübergang mit einem Dehnprofil") ("nosing joint")

- are simple and robust (low risk of damage by snow plough)
- require relatively small blockouts only
- are theoretically watertight
- cause significant noise unless provided with sinus plates
- can accommodate multiaxial horizontal movements and small vertical offsets (the latter impairing user comfort and causing even more noise)
- typical movement capacity: 80 mm (100 mm with sinus plates)
- → economical and robust solution for small movements (including multiaxial horizontal movements)

- provide with sinus plates for noise attenuation
- even though theoretically watertight, provide controlled drainage (water evacuation duct) below

Single profile joint ("Fahrbahnübergang mit einem Dehnprofil") ("nosing joint")

- are simple and robust (low risk of damage by snow plough)
- require relatively small blockouts only
- are theoretically watertight
- cause significant noise unless provided with sinus plates
- can accommodate multiaxial horizontal movements and small vertical offsets (the latter impairing user comfort and causing even more noise)
- typical movement capacity: 80 mm (100 mm with sinus plates)
- → economical and robust solution for small movements (including multiaxial horizontal movements)

- provide with sinus plates for noise attenuation
- even though theoretically watertight, provide controlled drainage (water evacuation duct) below

Cantilever (finger) joint ("Kragfingerübergang")

- are relatively simple but vulnerable by small vertical offsets (damage by snow plough)
- may cause severe traffic accidents if failing (e.g. due to fatigue) and put upright by traffic
- are not watertight \rightarrow provide water evacuation duct below
- cause moderate noise
- can accommodate moderate multiaxial horizontal movements (with triangular "fingers") but no vertical offset
- typical movement capacity: up to $\approx 400 \text{ mm}$
- → economical solution for moderate movements (including multiaxial horizontal movements)
- \rightarrow but requires regular inspection to minimise risk of failure

The following should be observed:

- do not use unless vertical offsets can be excluded
- avoid in areas with regular snow plough traffic

26.03.2024

Cantilever (finger) joint ("Kragfingerübergang")

- are relatively simple but vulnerable by small vertical offsets (damage by snow plough)
- may cause severe traffic accidents if failing (e.g. due to fatigue) and put upright by traffic
- are not watertight \rightarrow provide water evacuation duct below
- cause moderate noise
- can accommodate moderate multiaxial horizontal movements (with triangular "fingers") but no vertical offset
- typical movement capacity: up to \approx 400 mm
- → economical solution for moderate movements (including multiaxial horizontal movements)
- \rightarrow but requires regular inspection to minimise risk of failure

- do not use unless vertical offsets can be excluded
- avoid in areas with regular snow plough traffic

Supported finger joint ("Gleitfingerübergang")

- are relatively complex mechanical devices
- are not watertight \rightarrow provide water evacuation duct below
- cause moderate noise
- can only accommodate uniaxial horizontal movements in direction of fingers and no vertical offsets
- typical movement capacity: up to $\approx 800 \text{ mm}$
- \rightarrow economical solution for large uniaxial movements

- avoid use if vertical offsets cannot be excluded
- do not use in areas with regular snow plough traffic
- avoid sliding finger joints without hold-down device (risk of accidents, see cantilever finger joint)

Supported finger joint ("Gleitfingerübergang")

- are relatively complex mechanical devices
- are not watertight \rightarrow provide water evacuation duct below
- cause moderate noise
- can only accommodate uniaxial horizontal movements in direction of fingers and no vertical offsets
- typical movement capacity: up to $\approx 800 \text{ mm}$
- \rightarrow economical solution for large uniaxial movements

- avoid use if vertical offsets cannot be excluded
- do not use in areas with regular snow plough traffic
- avoid sliding finger joints without hold-down device (risk of accidents, see cantilever finger joint)

Modular joint ("Mehrzelliger Fahrbahnübergang")

- are complex mechanical devices
- are theoretically watertight
- cause significant noise unless provided with sinus plates
- can accommodate large multiaxial horizontal movements and moderate vertical offsets
- typical movement capacity: 80 mm per sealing profile (100 mm with sinus plates), current record ≥ 24 profiles
- → adequate solution for large movements (including multiaxial horizontal movements) and for moderate vertical movements if vertical offsets cannot be excluded

- provide with sinus plates for noise attenuation
- even though theoretically watertight, provide controlled drainage (water evacuation duct) below
- products differ e.g. by steering system (avoid localisation of movement in weakest profile, photo on second slide)
- variants for seismic applications (lifeline structures) exist

Modular joint ("Mehrzelliger Fahrbahnübergang")

- are complex mechanical devices
- are theoretically watertight
- cause significant noise unless provided with sinus plates
- can accommodate large multiaxial horizontal movements
 and moderate vertical offsets
- typical movement capacity: 80 mm per sealing profile (100 mm with sinus plates), current record ≥ 24 profiles
- → adequate solution for large movements (including multiaxial horizontal movements) and for moderate vertical movements if vertical offsets cannot be excluded

- provide with sinus plates for noise attenuation
- even though theoretically watertight, provide controlled drainage (water evacuation duct) below
- products differ e.g. by steering system (avoid localisation of movement in weakest profile, photo on second slide)
- variants for seismic applications (lifeline structures) exist

Modular joint ("Mehrzelliger Fahrbahnübergang")

- are complex mechanical devices
- are theoretically watertight
- cause significant noise unless provided with sinus plates
- can accommodate large multiaxial horizontal movements
 and moderate vertical offsets
- typical movement capacity: 80 mm per sealing profile (100 mm with sinus plates), current record ≥ 24 profiles
- → adequate solution for large movements (including multiaxial horizontal movements) and for moderate vertical movements if vertical offsets cannot be excluded

- provide with sinus plates for noise attenuation
- even though theoretically watertight, provide controlled drainage (water evacuation duct) below
- products differ e.g. by steering system (avoid localisation of movement in weakest profile, photo on second slide)
- variants for seismic applications (lifeline structures) exist

Modular joint ("Mehrzelliger Fahrbahnübergang")

- are complex mechanical devices
- are theoretically watertight
- cause significant noise unless provided with sinus plates
- can accommodate large multiaxial horizontal movements and moderate vertical offsets
- typical movement capacity: 80 mm per sealing profile (100 mm with sinus plates), current record ≥ 26 profiles
- → adequate solution for large movements (including multiaxial horizontal movements) and for moderate vertical movements if vertical offsets cannot be excluded

The following should be observed:

- provide with sinus plates for noise attenuation
- even though theoretically watertight, provide controlled drainage (water evacuation duct) below
- products differ e.g. by steering system (avoid localisation of movement in weakest profile, photo on second slide)

• variants for seismic applications (lifeline structures) exist

22

Support and articulation

Jointed bridges – Bearing layout principles

Basic principles for choice of bearing layout

Always check first the feasibility of a (semi-) integral bridge. If integral or semi-integral solutions are not possible, the following recommendations for jointed bridges apply:

- avoid girder joints in the span or over supports exception: long railway viaducts, see next slides
- avoid uplift (negative reactions), considering / optimising ... proportion of spans (end span / typical span)
 - ... transverse spacing of bearings per support axis ... torsion span
- minimise articulation of pier to girder connections
 ... use flexible piers monolithically connected to girder
 ... if not possible, use concrete hinges or fixed bearings
 ... minimise longitudinally movable bearings on piers
- limit longitudinal restraint (no contradiction, see notes)
 ... provide longitudinal fixity only at one abutment
- provide horizontal fixity at supports with high vertical reactions (e.g. monolithically connected piers); at abutments choose bearing with higher minimum vertical loads coexistent with maximum horizontal (see notes)

Basic principles for choice of bearing layout

An exception to the rule of avoiding girder joints are long railway viaducts, since rail expansion devices are highly complex and very expensive, yet only available up to a limited length.

Two different solutions (illustrated on some recent examples of highspeed rail viaducts on the following slides) can be distinguished:

- avoid rail expansion devices
 - → limit movement length to $I_{mov} \approx 90$ m by bridge expansion devices (value of I_{mov} by experience or track-bridge interaction analysis)
- exploit maximum movement capacity of rail expansion devices

 → e.g. for Spanish AVE max. girder end movement ≈ 1200 mm
 movement length I_{mov} ≈ 1200 m (concrete) …1600 m (composite)

In many cases, avoiding rail expansion devices is preferred, since these devices are very expensive and require regular maintenance. However, this benefit may be outweighed by the less efficient structural system caused by the bridge expansion, both for vertical loads (no continuity at joints) as well as for horizontal loads (full braking/traction forces on each 90 m bridge segment requiring massive piers). In soft soil and/or challenging conditions for pier placement, providing a rail expansion device may thus be preferable economically and aesthetically.

26.03.2024

Gänsebachtalbrücke, Erfurt-Leipzig/Halle (Schlaich Bergermann Partner, 2012):

- double track high speed railway bridge, ballastless track
- prestressed concrete girder
- total length 1'001 m, height ca. 20 m
- main span 24.5 m, girder depth 3 m
- 10 fully monolithic sections:
 52.5 + 8.112 + 52.5 m
- no rail expansion devices
- stabilised longitudinally by integral abutments and 10-12 m wide stiff bents, at centre of 112 m sections
- stabilised transversely by abutments and frames at bridge expansion joints (i.e. between sections, which are connected in transverse direction to avoid horizontal offsets)

Unstruttalbrücke, Erfurt-Leipzig/Halle (Schlaich Bergermann Partner, 2012):

- double track high speed railway bridge, ballastless track
- prestressed concrete girder
- total length 2'668 m, height ca. 50 m
- main span 58 m, arch span 108 m, girder depth 5.69 m
- 6 fully monolithic sections: 174 + 4.580 + 174 m
- stabilised horizontally by abutments and arches at centre of 580 m sections
- bridge expansion joints and rail expansion devices between sections (movement length 580 m)
- four bridge bearings only (two per abutments)

Viaducto de Archidona, Granada-Malaga (IDEAM, F. Millanes, 2012):

- double track high speed railway bridge, ballasted track
- steel-concrete composite girder with double composite action
- total length 3'150 m, height ca. 25 m
- continuous girder over 3'150 m, spans
 35 + 29.50 + 2.65 + 30.50 + 35 m
- girder depth 3.40 m
- stabilised longitudinally by triangular bent at the centre of the 3'150 m
- stabilised transversely at each pier (two multiaxial sliding bearings and a shear key on top of each pier)
- bridge expansion joints and rail track expansion devices at both abutments, movement length 1'600 m / 1'550 m

Basic principles for choice of bearing layout

After this excursion into the exception to the rule of avoiding girder joints (long railway viaducts), remember the main principles for the choice of the bearing layout:

- check feasibility of (semi-) integral bridge
- avoid girder joints (except in long railway viaducts)
- avoid uplift
- minimise articulation of pier to girder connections
- limit longitudinal restraint
- provide horizontal fixity at supports with high vertical reactions

Basic principles for choice of bearing layout (continued)

Further aspects to be considered (see figures) are:

- movable bridge bearings are usually arranged horizontally, but the road / railway line has a longitudinal gradient
- \rightarrow vertical offset caused by horizontal girder end movements
- \rightarrow at large movements and/or slopes :
 - ... use expansion joint that accommodates vertical offsets
 - ... or arrange bearings parallel to road alignment (in railway bridges, only possible solution)
- position expansion joints close to the support axis to minimise vertical offsets caused by girder end rotations
- movable bearings cause horizontal reactions (friction, elasticity of deformed elastomeric bearing, ...)
- \rightarrow account for in the design of substructure
- Expansion joints and movable bearings are usually installed with an offset (more movement capacity for girder contraction than expansion)
- \rightarrow consider installation temperature when choosing offset

Effect of longitudinal gradient (slope)

simplified model (spine) \rightarrow additional considerations required

Basic principles for choice of bearing layout (continued)

Further aspects to be considered (continued):

- single profile expansion joints (nosing joints) are
 ... inexpensive
 - ... much more robust than other expansion joints
 - ... have a movement capacity of $\Delta u_{spj} = 80...100$ mm (80 mm without, 100 mm with sinus plates)
 - \rightarrow concepts using only single profile expansion joints preferred
- \rightarrow if design movements for entire girder length are less than Δu_{spj}
 - \rightarrow fixity at one abutment (usually less high abutment)
 - \rightarrow single profile expansion joint at other abutment
- → if design movement for entire girder length is between Δu_{spj} and $2 \cdot \Delta u_{spj}$
 - → longitudinal stabilisation by piers (with fixed point near middle of bridge length)
 - \rightarrow single profile expansion joint at both abutments

Single profile expansion joint

Modular expansion joint

Basic principles for choice of bearing layout (continued)

In sites with high seismicity, different strategies are possible, considering the following aspects:

- Integral bridges (e.g. frames) are generally well suited for seismic regions, but
 - ... relatively high seismic loads (stiff system)
 - ... large forces may be induced to the bridge by integral abutments (the abutments move the bridge)
 - \rightarrow may be problematic in long bridges
- Horizontal seismic loads may be significantly reduced by providing longitudinal fixity at a flexible pier, rather than an abutment (low frequency) but
 - ... movements under non-seismic horizontal forces (braking) may become critical
- For very high seismicity, elastomeric bearings with high damping (lead rubber bearings) or special (spherical) bearings with large movement capacity may be used to achieve a base isolation.

Support and articulation

Jointed bridges – Bearing layout examples
Examples: Simply supported girder

In a simply supported girder, longitudinal fixity must be provided at an abutment.

The figure shows an «obvious» solution:

- longitudinal fixity provided by both bearings at left abutment
- transverse fixity provided by one bearing per abutment This bearing layout theoretically
- Avoids restraint due to expansion and contraction
- provides statically indeterminate horizontal support (clamped at left abutment)
- allows sharing longitudinal support reactions among two bearings

While this would be advantageous, this bearing layout should be avoided due to tolerances in uniaxial bearings, see next slide

Obvious solution – not recommended (yet often used ...)

Examples: Simply supported girder

- The guides of uniaxial bearings usually have several millimetres of play due to tolerances
- → unclear if clamping at left abutment can be activated (girder stiff in transverse direction)
- → longitudinal forces will act on one bearing only, until it deforms considerably, but usual bearings do not provide sufficient ductility for relevant redistribution
- → layout to be avoided (though often used and shown in many textbooks)

Further remark: As in all usual solutions with four bearings (following slides), the support for vertical forces is statically indeterminate (3 vertical supports would be sufficient)

 \rightarrow relevant for steel and prefabricated girders lifted in

(precise levelling of supports required unless the torsional stiffness is small)

Obvious solution – not recommended (yet often used ...)

Examples: Simply supported girder

The figure shows three alternatives to the «obvious» solution on the previous slides:

- Iongitudinal fixity provided by one bearing at left abutment, transverse fixity by one bearing per abutment
 - \rightarrow statically determinate horizontal support
 - \rightarrow limited capacity for longitudinal forces
- (2) Longitudinal and transverse fixity provided by two bearings on left abutment, transverse fixity by one bearing on right abutment
 - \rightarrow higher capacity for longitudinal forces
 - → frame action in transverse direction to be considered at left abutment (higher transverse reactions)
- (3) horizontal fixity provided entirely by separate guide bearings
 - → suitable for high horizontal forces even for small vertical reactions (e.g. due to torsion)
 - \rightarrow more expensive

Alternative 1 – low-moderate horizontal loads

Alternative 2 – high longitudinal and transverse loads

Alternative 3 – high horizontal loads

Examples: Continuous girder Stiff twin piers or stems with movable bearings

In continuous girders, longitudinal fixity may be provided by the piers or at an abutment.

The figure shows a solution for a girder supported on bearings positioned on top of stiff twin piers (or stems):

- longitudinal fixity provided at left abutment
- transverse fixity provided by one bearing per vertical support axis
- torsional support provided at abutments and piers
- \rightarrow feasible solution, advantages / weak points:
 - ... many bearings
 - ... many stiff piers or massive stems
 - ... large movements to be accommodated at
 - right abutment
 - ... short torsion span

Stiff twin piers (or wide stem) with movable bearings

26.03.2024

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Examples: Continuous girder Longitudinally slender twin piers, monolithic connection or fixed bearings

The figure shows a solution for a girder supported on slender twin piers, monolithically connected to the girder (or via fixed bearings / concrete hinges)

- longitudinal fixity provided at left abutment
- small longitudinal restraint (pier stiffness)
- transverse fixity provided by piers and one bearing per abutment
- torsional support provided at abutments and piers
- \rightarrow feasible solution, advantages / weak points:
 - ... bearings only at abutments
 - ... many piers (but slender)
 - ... large movements to be accommodated at
 - right abutment
 - ... short torsion span

Longitudinally slender twin piers, monolithic or fixed bearings

<u>PLAN</u>

Vertical static system

Examples: Continuous girder Single piers longitudinally stabilising the girder

The figure shows a solution for a girder supported on single piers, monolithically connected to the girder (or via fixed bearings / concrete hinges)

- longitudinal fixity provided by piers
- small longitudinal restraint (pier stiffness)
- transverse fixity provided by piers and one bearing per abutment
- torsional support provided at abutments only (plus transverse frame action, see notes)
- \rightarrow feasible solution, advantages / weak points:
 - ... bearings only at abutments
 - ... few piers, elegant solution but higher demand on pier foundations
 - ... movements split among abutments
 - ... uncertainty in position of fixed points
 - ... long torsion span \rightarrow risk of uplift at abutments (see next slides)

Single piers, monolithic or fixed bearings

26.03.2024

Examples: Continuous girder

If single piers are used, torsional moments at the abutments are higher and hence uplift may occur

- → avoid if possible by changing the bearing layout, see «basic principles for choice of bearing layout» for options)
- even without uplift, the vertical support reactions may not be sufficient to transfer horizontal loads with conventional bearings
- → guide bearings may be required, as illustrated in the figures on the slide

Longitudinally slender single piers, monolithic or fixed bearings

Single piers, monolithic or fixed bearings

Support and articulation – Curved bridge kinematics

Examples: Curved bridges (kinematics)

Two types of girder deformations occur:

- longitudinal prestressing and creep
 - \rightarrow axial deformation
 - \rightarrow girder shortens along ist axis
 - \rightarrow radius of curvature remains unchanged
 - \rightarrow tangential movements at opposite bridge end
- uniform temperature variation and shrinkage
 - \rightarrow uniform (3D) deformation
 - \rightarrow girder is «scaled»
 - \rightarrow radius of curvature changes
 - \rightarrow "radial" movements in direction of fixed point

In straight bridges, the direction of these movements (nearly) coincide. In strongly curved bridges, the differences are significant.

Support and articulation – Curved bridge kinematics

Examples: Curved bridges (kinematics)

By allowing a rotation around the fixed point (usually at one abutment), it is possible to obtain the same direction of movement, due to

- temperature and shrinkage and
- longitudinal prestressing and creep

for one specific point *P* of a curved girder. Typically, the point P is chosen at a uniaxial sliding bearing at the opposite abutment, moving tangentially to the girder axis (standard expansion joint width can be used), see figure on the right.

All other points (e.g. P', P") still move in different directions due to temperature and shrinkage and longitudinal prestressing and creep, respectively.

- → only one uniaxially movable bearing (other than the fixed point) possible for horizontally restraint-free support of curved bridges
- \rightarrow corresponds to isostatic support in plan

Examples: Curved simply supported girder

In simply supported curved bridges, horizontal fixity must be provided at an abutment:

- at the other abutment, a tangential bearing layout is preferable (standard expansion joint)
- horizontally fixed bearings are preferably positioned at the outside (larger support reaction)

Regarding longitudinal and transverse fixity see straight simply supported bridges (slide with possible alternatives 1-3).

Examples: Curved continuous girder Monolithically connected piers longitudinally stabilising the girder

As for straight continuous girders, small restraint forces caused by monolithically (or via fixed bearings or concrete hinges) connected piers can often be accepted.

On this slide, solutions where the piers provide longitudinal fixity are shown.

Compared to straight bridges, uplift is more likely due to the curvature in plan, particularly in the single piers solution (\rightarrow guide bearings)

Further advantages and drawbacks see straight girders.

26.03.2024

Examples: Curved continuous girder

Designers sometimes hesitate to use single piers in curved bridges since they anticipate that

- due to the longer torsional span (compared to twin pier support layouts)
- the torques M_{ν}/r caused by curvature
- will result in disproportional torsional moments

However, in a continuous girder, the **positive and negative torques** (caused by positive and negative bending moments) **largely compensate**, such that only little torsion is resisted by piers providing torsional support anyway. Solutions with single piers are therefore perfectly feasible in long curved bridges.

Further details see curved bridges.

Support and articulation

Integral and semi-integral bridges – Basics

As mentioned in the introduction, the definitions shown below are used in the lecture

- integral and semi-integral bridges have no joints, neither in the girder, nor between girder and adjoining road / railway track
- → movements of the bridge girder must be accommodated by the bridge end (backfill, transition slab, adjoining road / railway track)

Integral bridge

Semi-integral bridge

26.03.2024

As mentioned in the introduction, the definitions shown below are used in the lecture

- integral and semi-integral bridges have no joints, neither in the girder, nor between girder and adjoining road / railway track
- → movements of the bridge girder must be accommodated by the bridge end (backfill, transition slab, adjoining road / railway track)

Integral bridge ends (neither expansion joint nor bearing)

Semi-integral bridge ends (bearing only)

Jointed bridge ends (with expansion joint and bearing)

If the bridge ends of a straight (semi-)integral bridge were perfectly rigid:

- deformations Δ_0 of the girder would be fully restrained
- huge normal forces N₀ would result
- → normal bridge ends cannot resist such high forces (particularly in tension) without significant movements (the abutment is stiff, but subsoil and backfill are not)
- \rightarrow modelling rigid bridge ends is completely unrealistic

The behaviour can usually be reasonably approximated by using elastic springs with a flexibility c_f [m/kN], where the bridge ends are typically much more flexible than the bridge girder:

$$c_{f1} + c_{f2} \gg \frac{l}{EA}$$
 [m/kN]

- \rightarrow restraint forces *N* are much smaller than those for full restraint (usually less than 10% of *N*₀)
- → almost the full, free (unrestrained) deformations Δ_0 of the girder occur and have to be accommodated by the bridge ends (horizontal movements Δ_h)

The most unfavourable value of the restraint forces N (though much smaller than N_0) must be accounted for in the design of the bridge girder

 \rightarrow design for bending + axial tension (at max. contraction)

As in jointed bridges, the bridge ends must accommodate the movements of the girder, which are caused by :

- expansion and contraction of the girder (temperature, shrinkage, prestressing, creep)
- horizontal (and sometimes vertical) loads

These bridge end movements Δ_h depend on many parameters subject to uncertainty, particularly

- cracking of piers and abutments
- soil-structure interaction

Generally, a sensitivity analysis using upper and lower bound values of soil parameters should be carried out, particularly in order to capture their influence on the position of the fixed point (centre of movement) for girder deformations. Movements due to girder contraction (schematic, integral bridge)

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

The movements of the bridge ends are

- partly monotonic (shrinkage, prestressing, creep)
- partly cyclic (temperature)

The abutment walls move with the girder, which in turn imposes them to the backfill, causing so-called strainratcheting and hence

- → significantly higher earth pressures on the abutment wall (see illustrations on right side), to be accounted in the dimensioning of abutment and girder
- → settlements of the backfill and pavement cracks if the movements are large (see next slide)

In long integral bridges, the movements of the bridge ends are large and hence

- settlements of the backfill and pavement cracks must generally be expected
- the locations where pavement cracks will occur cannot be accurately predicted
- → pavement cracks can only partly be avoided by sawcutting the pavement or flexible plug joints
- → certain pavement repair works must therefore always be expected in this type of structure

Hence, the movements Δ_h of the bridge ends are obviously the pertinent criterion for the suitability of integral and semi-integral bridge ends

- first proposed in ASTRA guideline 12004 (2010) (limit 20...30 mm, see following slides)
- part of current draft Annex A2 to EN1990 (limit 30 mm)

Earlier guidelines instead used the movement length as criterion. However, this neglects that:

- girder deformations differ significantly
- \rightarrow longer composite integral bridges possible
- girder deformations are much smaller in existing concrete bridges (shrinkage + creep have decayed)
- → in bridge rehabilitations existing expansion joints can often be eliminated (semi-integral abutments)
- curved bridges absorb girder deformations by radial movements (see curved integral bridges)

Nevertheless, integral and semi-integral structures are appropriate and economic in many cases, since they offer a number of advantages:

- \rightarrow lower construction costs
 - ... no maintenance chamber
 - ... no expansion joint
 - ... no separate drainage
- → lower maintenance costs (pavement repairs vs. maintenance of expansion joints) with plannable, short interventions only
- → less restricted ratios of side span / interior span (uplift less critical)
- → longer or more slender end spans possible (frame action of integral abutment, see photo)
- → noise reduction and enhanced user comfort (no discontinuity in pavement, smoother ride)
- → structural redundancy (robustness)

Support and articulation

Integral and semi-integral bridges – Suitability criteria

Support and articulation – (Semi-)integral bridge suitability criteria

Movements of (semi-)integral bridge ends

The ASTRA guideline 12004 (2010) specifies a maximum bridge end movement of 20 mm on high capacity roads, and 30 mm on all other roads, for integral or semi-integral bridge ends.

The relevant movement $\Delta_h \leq 20...30$ mm is the larger of the following values (SIA 260):

- magnitude of unidirectional movement of bridge end after installation of pavement and subbase, for occasional load cases ("seltene Lastfälle") due to:
 - ... girder contraction caused by temperature, shrinkage, prestressing and creep
 - ... horizontal movements caused by applied loads
- amplitude of cyclic movements of bridge end for frequent load cases caused by
 - ... girder expansion and contraction due to temperature variation ΔT
 - ... horizontal movements caused by applied loads

Bridge end movements as criterion for suitability of integral or semi-integral bridge end types (ASTRA RL 12004)

Bridge end types (ASTRA 12004), see behind for details:

- I1 / I2: integral, flexible without transition slab
- I3 / I4: Integral, flexible with transition slab
- I5 / S: integral, stiff (strongly curved bridges) or semi-integral
- D: jointed

Support and articulation – (Semi-)integral bridge suitability criteria

Movements of (semi-)integral bridge ends

In conceptual design, a simplified approach can be used if

- the bridge is straight or slightly curved
- the fixed point is reliably known
- no significant horizontal movements of the bridge ends are caused by vertical or horizontal loads
- \rightarrow the movements Δ_h of bridge ends are approximately proportional to
 - ... the movement length and
 - ... the free (unrestrained) girder deformations

Movements due to girder contraction (schematic, bridge longitudinally stabilised by piers)

Support and articulation – (Semi-)integral bridge suitability criteria

Movements of (semi-)integral bridge ends

If the simplified approach is applicable, the chart on the right can be used to determine the maximum movement length for an integral bridge end:

- hyperbolic branches: monotonic contraction governs
- constant branches: cyclic movements
 govern

In the optimum case of a symmetrical layout (equal movement length of both bridge ends):

- → max. length of integral composite bridge:
 80 m (high capacity roads)
 120 m (other roads)
- → max. length of integral concrete bridge (if creep and shrinkage have decayed): 100 m (high capacity roads) 150 m (other roads)

magnitude of monotonic girder deformations ε_0 [·10⁻⁶] after installation of subbase and pavement

Support and articulation

Integral and semi-integral bridges – Curved integral bridges

Support and articulation – Curved integral bridges

Movements of (semi-)integral bridge ends

The behaviour of curved integral bridges is governed by

- the geometry and the stiffness conditions, including
 - ... aperture angle in plan
 - ... transverse and axial stiffness of girder
 - ... horizontal stiffness of piers and abutments
 - ... foundation stiffness

Due to the curvature, the restrained deformations of the girder cause not only

- axial restraint forces *N* (as in straight and slightly curved bridges), but also
- bending moments M_z (around z-axis = "in plan")
- \rightarrow transverse (radial) deformations of the girder
- \rightarrow change of aperture angle and radius of curvature
- \rightarrow girder virtually evades the axial restraint
- → significant reduction of axial restraint forces compared to straight bridges (under favourable stiffness conditions)

Support and articulation – Curved integral bridges

Movements of (semi-)integral bridge ends

The ends of curved integral bridges undergo not only

- longitudinal movements (as bridge ends of straight and slightly curved bridges), but also
- transverse movements and rotations around the vertical axis
- → maximum horizontal movement of bridge end at edge of bridge, rather than in the bridge axis
- → criterion for maximum bridge end movements (20...30 mm) has to be applied to the maximum resulting movement

Support and articulation – Curved integral bridges

Movements of (semi-)integral bridge ends

This slide shows the results of on-site measurements on a curved integral bridge (Einfahrtsrampe BW714, Dreieck Zürich West, length 120 m), over a period of several months after construction.

It can clearly be seen that the bridge moves primarily in the radial direction, while the bridge ends rotate, but hardly move in plan.

Support and articulation

Integral and semi-integral bridges – Bridge end examples

Examples of (semi-)integral bridge ends

This slide, and the following, show examples of (semi-) integral bridge ends according to ASTRA guideline 12004

Flexible integral bridge end types (straight bridges):

- Type I1: No transition slab
- → short bridges ($\Delta_h \le 5...10$ mm) with low abutments; requires checking settlements of backfill
- Type I2: No transition slab, subbase cont. over bridge
 → short bridges (Δ_h ≤ 5…10 mm) with low abutments; requires checking settlements of backfill
- Type I3: With transition slab
- → medium length bridges ($\Delta_h \le 20...30$ mm), standard case
- Type I4: With transition slab, subbase cont. over bridge → medium-long bridges ($\Delta_h \le 20...30$ mm) with short spans

I1 / I2: Integral, flexible without transition slab

I3 / I4: Integral, flexible with transition slab

Examples of (semi-)integral bridge ends

This slide, and the following, show examples of (semi-) integral bridge ends according to ASTRA guideline 12004

Flexible integral bridge end types (straight bridges):

Type I3: With transition slab

→ medium length bridges ($\Delta_h \le 20...30$ mm), standard case

Examples of (semi-)integral bridge ends

This slide, and the following, show examples of (semi-) integral bridge ends according to ASTRA guideline 12004

Stiff integral bridge end types (curved bridges):

- Type I5
- → long strongly curved bridges ($\Delta_h \le 20...30$ mm) with stiff bridge ends (reduce rotation of bridge ends in plan)

15: integral, stiff (strongly curved bridges)

Examples of (semi-)integral bridge ends

This slide, and the following, show examples of (semi-) integral bridge ends according to ASTRA guideline 12004

Semi-integral bridge end type:

- Type S: Semi-integral
- → long straight bridges ($\Delta_h \le 20...30$ mm) ... in cases with stiff abutments (low, on rock) ... modification of existing jointed bridge ends

S: semi-integral

Support and articulation – (Semi-)integral bridge end examples

Examples of (semi-)integral bridge ends

The provisions and designs for bridge ends differ significantly between clients / countries / designers.

The figure illustrates provisions for integral road bridge ends in the United Kingdom. In the UK, bridges up to a length of 60 m must be built with integral abutments, unless it is proven that this is not possible.

Support and articulation – (Semi-)integral bridge end examples

Examples of (semi-)integral bridge ends

The provisions and designs for bridge ends differ significantly between clients / countries / designers.

The figure illustrates provisions for integral road bridge ends in Canada (Alberta). The solution shown at the bottom is used to avoid pavement damages in long bridges (bridge length > 75 m for steel girders, > 100 m for concrete girders).

