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Arch bridges – Structural response: Arch-deck girder interaction 

If an anti-funicular arch geometry is chosen, usually for 

permanent loads, arch bridges carry the corresponding loads 

efficiently. 

However, arch compression and non-anti-funicular loads need 

to be accounted for in design. Under such loads, the arch rib, 

deck girder and spandrel columns or hangers generally act as 

a frame system, whose behaviour depends on

→ the stiffness ratio of arch rib and deck girder

→ the type of connection between arch rib and deck girder 

(clamped or pin-jointed spandrel columns / “hangers”)

In a first step, the bending moments in the frame system can 

be subdivided into two components:

• fixed system

• flexible system

NB. The bending moments due to arch compression (strictly 

also  acting on the frame system) and second order moments 

must be superimposed to obtain the total moments.

fixed system

flexible system

deformed deck

deformed arch-deck
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Arch bridges – Structural response: Arch-deck girder interaction 

The following points have essentially been outlined in the Design

section. Here, they are repeated and a case-study is presented to 

highlight some specific aspects.

• fixed system

→ assume a perfectly rigid arch

→ bending moments in deck girder corresponding to those in a 

continuous beam (replacing spandrel columns by supports).

• flexible system

→ bending moments in the flexible system involve arch 

deflections due to non-anti-funicular loads

→ generally, these bending moments are shared by arch rib and 

deck girder in proportion to their bending stiffnesses

→ two ideal limiting cases can be considered:

→ deck-stiffened arches (“versteifter Stabbogen”), where the 

entire flexible system moments are resisted by the deck 

girder (“Versteifungsträger”)

→ stiff arches resisting the entire flexible system moments 

alone

fixed system

flexible system

stiff arch

deck bending moments

deformed arch-deck



In this study, a clamped deck-arch bridge, with expansion joints of the 

deck above the arch abutments (intersection of springing line with 

arch axis) is considered (unlike Slide 63: deck continuous).

In the first part, pin-jointed spandrel columns are assumed.

Two limiting cases:

• deck-stiffened arch

→ flexural deck girder stiffness EID >> flexural arch rib stiffness EIA

• stiff arch

→ flexural arch rib stiffness EIA >> flexural deck girder stiffness EID

In these limiting cases, either the stiffening girder or the stiff arch 

resists (almost) the entire bending moments.
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Arch bridges – Structural response: Arch-deck girder interaction 

stiff arch

deck-stiffened arch

columns
N ≠ 0

V = 0

M = 0
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deck above the arch abutments (intersection of springing line with 

arch axis) is considered (unlike Slide 63: deck continuous).
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Arch bridges – Structural response: Arch-deck girder interaction 
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In this study, a clamped deck-arch bridge, with expansion joints of the 

deck above the arch abutments (intersection of springing line with 

arch axis) is considered (unlike Slide 63: deck continuous).

In the first part, pin-jointed spandrel columns are assumed.
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→ flexural deck girder stiffness EID >> flexural arch rib stiffness EIA
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→ flexural arch rib stiffness EIA >> flexural deck girder stiffness EID
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Arch bridges – Structural response: Arch-deck girder interaction 
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In this study, a clamped deck-arch bridge, with expansion joints of the 

deck above the arch abutments (intersection of springing line with 

arch axis) is considered (unlike Slide 63: deck continuous).

In the first part, pin-jointed spandrel columns are assumed.

Two limiting cases:

• deck-stiffened arch

→ flexural deck girder stiffness EID >> flexural arch rib stiffness EIA

• stiff arch

→ flexural arch rib stiffness EIA >> flexural deck girder stiffness EID

In these limiting cases, either the stiffening girder or the stiff arch 

resists (almost) the entire bending moments.

The differences of bending moments and deflections between arch 

rib and deck girder are due to the different support conditions 

assumed here (clamped vs. simply supported). In the design section 

(Slide 63), both are assumed to be continuous.
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Arch bridges – Structural response: Arch-deck girder interaction 

stiff arch
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If the spandrel columns are clamped, rather than pin-jointed, arch rib 

and deck are not only coupled in terms of vertical deformations, but 

act as frame system.

Two limiting cases:

• deck-stiffened arch

→ flexural deck girder stiffness EID >> flexural arch rib stiffness EIA

• stiff arch

→ flexural arch rib stiffness EIA >> flexural deck girder stiffness EID
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Arch bridges – Structural response: Arch-deck girder interaction 
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Arch bridges – Structural response: Arch-deck girder interaction 
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If the spandrel columns are clamped, rather than pin-jointed, arch rib 

and deck are not only coupled in terms of vertical deformations, but 

act as frame system.

Clamped spandrel columns, together with deck girder and arch rib, 

act as Vierendeel girder

→ significantly stiffer than sum of deck girder and arch stiffness

→ deflections significantly reduced

The short clamped spandrel columns close to the crown have a high 

flexural stiffness and transfer the axial normal force from the arch rib 

to the deck. 

In some cases, shear forces and bending moments in such spandrel 

columns may be excessive → (concrete) hinges may be provided to 

reduce these actions (e.g. Tamina bridge)
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Arch bridges – Structural response: Arch-deck girder interaction 
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Arch bridges – Structural response: Arch support conditions / hinges

Basic assumptions

This and the next slides compare the structural behaviour 

of arches with three common (in the past) support / hinge 

conditions:

• three-hinged arch (hinges at springing line and crown)

• two-hinged arch (hinges at springing line)

• clamped arch (“zero-hinge” arch)

The response is compared numerically for a concrete 

arch with 100 m span and 15 m rise

→ rise-span ratio f / l = 1/6.67

→ solid concrete cross-section = constant over span

→ geometry of arch: anti-funicular curve of the average 

permanent loads (simplified method, see “Design”

section):

f / l = 1 / 6.67

100

15

1.2

2.0

three-hinged arch

clamped arch

two-hinged arch

g(x)
𝐺𝑖

𝑥

cross-section:

(Ec = 33.6 GPa

EA = 80.64 GN)

g

2

02

8
( )         ( ) ( )

8

g l f
H g z x M x

f g l


 =


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Arch bridges – Structural response: Arch support conditions / hinges

Permanent loads / linear analysis (1st order)

Considering a uniform permanent load of 200 kN/m,

a linear analysis yields the following results for:

• three-hinged arch

• two-hinged arch

• clamped arch

The arch compression causes vertical deflections →

these depend only (three-hinged arch) on the axial 

stiffness EA.

However, as the arch is isostatic, the internal actions 

and the reactions are independent of the stiffnesses 

(EA, EI,…)

→ constant arch thrust H = 16’667 kN

→ bending moment along the arch M(x) = 0

→ displacement compatibility is not needed to obtain 

the internal forces

initial geometry

(anti-funicular of

the dead loads)

200 /g kN m=

three-hinged arch

x

39

- 16667

Normal force [kN]

Bending moment [kNm]

N

M

- 19436

( )H g ( )H g

10000 kN 10000 kN

c

Deflections / crown displacement c [mm]

0

2 2

( ) ( ) cos

200 100
( ) 16667 

8 8·15

N g H g

g l
H g kN

f

= −

 
 = =


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Arch bridges – Structural response: Arch support conditions / hinges

Permanent loads / linear analysis (1st order)

Considering a uniform permanent load of 200 kN/m,

a linear analysis yields the following results for:

• three-hinged arch

• two-hinged arch

• clamped arch

The arch compression causes vertical deflections →

these depend on the axial stiffness EA and (slightly) on 

the bending stiffness EI (M(x)  0).

The arch is hyperstatic → internal actions and reactions

depend on the stiffnesses (EA, EI)

→ constant arch thrust H  16’667 kN

→ positive moments in the arch M(x)  0

→ displacement compatibility is required to obtain the 

internal forces

200 /g kN m=

two-hinged arch

three-hinged arch

x

39

31

- 19422

- 16667

258

Normal force [kN]

Bending moment [kNm]

- 16649

- 19436

( )H g ( )H g

10000 kN 10000 kN

initial geometry

(anti-funicular of

the dead loads)

c

N

M

0

Deflections / crown displacement c [mm]
2 2

( ) ( ) cos

200 100
( ) 16667 

8 8·15

N g H g

g l
H g kN

f

= −

 
 = =


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Arch bridges – Structural response: Arch support conditions / hinges

Permanent loads / linear analysis (1st order)

Considering a uniform permanent load of 200 kN/m,

a linear analysis yields the following results for:

• three-hinged arch

• two-hinged arch

• clamped arch

The arch compression causes vertical deflections →

these depend on the axial stiffness EA and (slightly) on 

the bending stiffness EI (M(x)  0).

The arch is hyperstatic → internal actions and reactions 

depend on the stiffnesses (EA, EI)

→ constant arch thrust H  16’667 kN

→ positive and negative moments in the arch M(x)  0 

→ displacement compatibility is required to obtain the 

internal forces

NB. Approximation: 𝛿𝑐 ≅
𝐻 ǉ𝑔

𝐸𝐴𝐴,𝑐 ∙ 𝑙 ∙
1+3 Τ𝑓 𝑙 2

4 Τ𝑓 𝑙
= 37 mm

(Slide 55, EAA = EAA ,c = const.)

200 /g kN m=

clamped arch

two-hinged arch

three-hinged arch

x

39

37
31

-19354 - 19422

- 16667

-947

504
258

Normal force [kN]

Bending moment [kNm]

-16570

- 16649

- 19436

( )H g ( )H g

10000 kN 10000 kN

initial geometry

(anti-funicular of

the dead loads)

c

N

M

0

Deflections / crown displacement c [mm]
2 2

( ) ( ) cos

200 100
( ) 16667 

8 8·15

N g H g

g l
H g kN

f

= −

 
 = =


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Arch bridges – Structural response: Arch support conditions / hinges

Permanent loads / linear analysis (1st order)

Considering a uniform permanent load of 200 kN/m,

a linear analysis yields the following results for:

• three-hinged arch

• two-hinged arch

• clamped arch

The axial force N is almost identical in the three cases.

The vertical displacements of the crown c, due to the 

arch compression, are almost identical for the three 

arches (see notes), as they depend mainly on the axial 

force N and the axial stiffness EA →  = N / EA

→ if EA → , c = 0 (rigid arch)

→ if the f / l ratio decreases, N and c will increase

Since the axial stiffness of the arch is much higher than 

the bending stiffness, the vertical displacements due to 

arch compression are essentially imposed to the arches. 

The bending moments M in the stiffer clamped arch are 

thus considerably higher than those in the other cases.

200 /g kN m=

clamped arch

two-hinged arch

three-hinged arch

x

39

37
31

-19354 - 19422

- 16667

-947

504
258

Normal force [kN]

Bending moment [kNm]

-16570

- 16649

- 19436

( )H g ( )H g

10000 kN 10000 kN

initial geometry

(anti-funicular of

the dead loads)

c

N

M

0

Deflections / crown displacement c [mm]
2 2

( ) ( ) cos

200 100
( ) 16667 

8 8·15

N g H g

g l
H g kN

f

= −

 
 = =



Note: Crown deflections are similar
in all systems
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Arch bridges – Structural response: Arch support conditions / hinges

Permanent loads / nonlinear analysis (2nd order)

Considering a uniform permanent load of 200 kN/m,

a nonlinear (2nd order) analysis yields the following 

results for:

• three-hinged arch

• two-hinged arch

• clamped arch

Geometric nonlinearity has a minor impact on the 

clamped and two-hinged arches → reduced second 

order effects in these hyperstatic arches (for f / l = 

1/6.67).

However, geometric nonlinearity strongly affects the 

three-hinged arch:

→ significant negative bending moments (rather than 

zero)

→ strong increase of the displacements: c increased 

by 36%

200 /g kN m=

clamped arch

two-hinged arch

three-hinged arch

x

53

37
31

-19394 - 19453

- 16726

-815

-391

556
261

Normal force [kN]

Bending moment [kNm]

-16617

- 16686

- 19488

( )H g ( )H g

10000 kN 10000 kN

initial geometry

(anti-funicular of

the dead loads)

c

N

M

Deflections / crown displacement c [mm]
2 2

( ) ( ) cos

200 100
( ) 16667 

8 8·15

N g H g

g l
H g kN

f

= −

 
 = =



Note: three-hinged arch is much more 
sensitive to second order effects
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Arch bridges – Structural response: Arch support conditions / hinges

Opening the crown with jacks (to lift arch off falsework)

The bending moments and deflections due to arch 

compression can be reduced – at the time of closure, 

see next slide – by opening the crown with jacks (first 

done by E. Freyssinet, usual today in some countries).

Jacks align with the centre of gravity: no bending 

moments are produced in the crown until it is closed

→ the two-hinged and clamped arches are composed for 

two system:

→ hinged arch at the crown (dead loads + part of the 

creep)

→ closed arch at the crown (all other loads)

g

clamped arch

x

( )H g ( )H g

initial geometry

(anti-funicular of

the dead loads)

c

Deflections / crown displacement c

Nc

f

· / 2g l · / 2g l

crown

1. forces at the crown in the deformed 
arch due to dead loads

2. additional force 
in the jacks

final situation

Nc

Nc +Nc

Nc

Nc
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Arch bridges – Structural response: Arch support conditions / hinges

Opening the crown with jacks (to lift arch off falsework)

The bending moments and deflections due to arch 

compression can be reduced – at the time of closure, 

see next slide – by opening the crown with jacks (first 

done by E. Freyssinet, usual today in some countries).

The additional normal force Nc is introduced at the 

crown (by means of a centric normal force Nc, applied 

by jacks) to reduce the total eccentricity e = M / N. 

The optimum values of the jacking forces can be 

determined by imposing the condition that the total 

bending moments at the abutments (springing line) 

vanish:

g

clamped arch

x

Ms

Bending moments due to Nc

Bending moment due to dead and imposed deformations

( )H g ( )H g

initial geometry

(anti-funicular of

the dead loads)

c

M

M

Deflections / crown displacement c

Nc

f

0 ·
s

s s c c M
M M f N N

f
= = − +  → = −

· / 2g l · / 2g l

f·Nc



07.04.2025 ETH Zürich  |  Chair of Concrete Structures and Bridge Design  |  Bridge Design Lectures 23

Arch bridges – Structural response: Arch support conditions / hinges

Opening the crown with jacks (to lift arch off falsework)

Using the parameters of the numerical example on the 

previous slides (including a hinge at the crown), the additional 

normal force Nc  at the crown in the clamped arch is:

Physically, the jacks have to apply the total normal force

Nc +Nc = 16625+42 = 16667 kN, acting in the arch rib axis.

Thereby, the total bending moment obviously vanishes at the 

springing lines (higher normal force in the arch chosen 

accordingly) → bending moments have been eliminated.

However, the beneficial effect will largely be lost due to creep

unless the jacks are kept installed and are re-adjusted until 

creep has decayed (as e.g. done for 5 years in the Krk

bridges, see Design section).

The clamped arch hinged at the crown, before it is closed, 

has certain sensitivity to 2nd effects (similar to the three-

hinged arch) → 2nd order effects should to be considered.

200 /g kN m=

clamped arch

x

48 (1st oder)

( ) cH g N+

10000 kN 10000 kN

initial geometry

(anti-funicular of

the dead loads)

c

Deflections / crown displacement c [mm]

627
41.8 kN

15

s
c M

N
f

 =− = =

3

( ) cH g N+

Ns= -19401 (1st oder)

Ns= -19437

Ms=0

Normal force [kN]

Bending moment [kNm]

Nc= -16625 (1st oder)

Nc= -16667

N

M

Ms= -627 (1st oder)

Nc +Nc = 16667 kN

Note: Small difference in N to lift the arch 
(but jacks need capacity for full N)

Beneficial effect partly lost due to creep
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Arch bridges – Structural response: Arch support conditions / hinges

Point load at crown  / linear analysis (1st order)

Considering a point load of 1000 kN at the crown, a 

linear analysis yields the following results:

• three-hinged arch

• two-hinged arch

• clamped arch

The differences between the axial forces in the three 

cases are moderate.

The bending moments and the deflections of the three-

hinged arch are markedly higher than in the other two 

cases: The vertical displacement at the crown c is ca. 

4…6 times greater.

The bending moments and deflections of two-hinged 

and clamped arches are very similar, except at the 

springing lines (obviously).

clamped arch three-hinged arch

x

Q = 1000 kN

38 54

-1578

- 1369

- 1667

-1957

-6250

4809 5564

Normal force [kN]

Bending moment [kNm]

-1540

- 1296

- 1687

500 kN 500 kN

initial geometry

(anti-funicular of

the dead loads)

c

N

M

1540 kN
1296 kN

1667 kN

two-hinged arch

227

2901

-2475

Deflections / crown displacement c [mm]
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Arch bridges – Structural response: Arch support conditions / hinges

Point load at crown  / nonlinear analysis (2nd order)

Considering a point load of 1000 kN at the crown, a 

nonlinear (2nd order) analysis yields the following 

results:

• three-hinged arch

• two-hinged arch

• clamped arch

Geometrical nonlinearity has a relevant effect (in this 

example) only in the three-hinged arch:

→ the maximum bending moment is increased by 7% 

→ the vertical displacement at the crown is increased 

by 10%

clamped arch three-hinged arch

x

Q = 1000 kN

39 56

- 1368

- 1687

-1988

-6691

4855 5629

Normal force [kN]

Bending moment [kNm]

-1542

- 1296

- 1708

500 kN 500 kN

initial geometry

(anti-funicular of

the dead loads)

c

N

M

1542 kN
1296 kN

1695 kN

two-hinged arch

251

2928

-2523

-1580

Deflections / crown displacement c [mm]

Note: Three-hinged arch is much 
softer under non-funicular load



07.04.2025 ETH Zürich  |  Chair of Concrete Structures and Bridge Design  |  Bridge Design Lectures 26

Arch bridges – Structural response: Arch support conditions / hinges

Point load at quarter points  / linear analysis (1st order)

Considering a point load of 1000 kN at the quarter 

point, a linear analysis yields the following results:

• three-hinged arch

• two-hinged arch

• clamped arch

The axial forces are similar for the three cases.

The two-hinged and three-hinged arches have a similar 

response (internal forces and deflections).

The clamped arch is clearly superior under asymmetric 

loads. For this example:

→ the maximum bending moment is approximately 

30% smaller than in the other two cases.

→ the maximum vertical displacement is approximately 

50% smaller than in the other two cases.

Note: the 2nd order effects have no significant influence 

in this example for this load case.

clamped arch three-hinged arch

x

Q = 1000 kN

73

151

6011

9375

3949

8306

Normal force [kN] (slightly curved in reality, for simplicity only one curve is drawn)

Bending moment [kNm]

- 846

- 928

- 841

750 kN

750 kN

841 kN

250 kN

250 kN

159 kN

initial geometry

(anti-funicular of

the dead loads)

c

N

M

833 kN

928 kN

880 kN

two-hinged arch

162

-5107 -4230

-57

-120
-129

833 kN

928 kN

880 kN

- 1100

- 1182

- 1187

-3125

-2478

Deflections / crown displacement c [mm]
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Arch bridges – Structural response: Arch support conditions / hinges

Horizontal support displacements

To analyse the influence of imposed deformations, 

horizontal displacements of 10 mm are imposed to the 

supports. The following results are obtained:

• three-hinged arch

• two-hinged arch

• clamped arch

The bending moments increase with the degree of 

statical indeterminacy:

→ the internal actions in the three-hinged arch are zero 

(isostatic system)

→ the bending moments are much higher for the 

clamped arch than the two-hinged arch

NB1: The same conclusion applies for other imposed 

deformations (temperature, creep,…).

NB2: Approximation: 𝛿𝑐 ≅
𝐻 ǉ𝑔

𝐸𝐴𝐴,𝑐 ∙ 𝑙 ∙
1+3 Τ𝑓 𝑙 2

4 Τ𝑓 𝑙
= 37 mm

(Slide 55, horizontal displacement)

clamped arch

two-hinged arch

three-hinged arch

x

33

31
26

77

-877

0

467
239

Normal force [kN]

Bending moment [kNm]

90
16

initial geometry

(anti-funicular of

the dead loads)

c

N

M

10 mm 10 mm

0

Deflections / crown displacement c [mm]

Note: Similar crown deflections in all 
systems, but much higher bending 

moments in clamped arch
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Arch bridges – Structural response: Arch support conditions / hinges

Effect of rise-to-span ratio f / l on bending moments

Here, a uniform permanent load g and a linear analysis 

is used. The arches considered are:

• two-hinged arch

• clamped arch

As outlined in the Design section and in the permanent 

loads analysis, the arch compression causes vertical 

deflections c. These deflections produce bending 

moments M(x), and the maximum and minimum 

bending moments can be expressed in terms of the 

vertical deflection.

As the normal force N depends on the rise-to-span 

ratio f /l, the latter has a strong influence on the 

vertical deflections and the bending moments.
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Arch bridges – Structural response: Arch support conditions / hinges

Effect of rise-to-span ratio f / l on bending moments

Here, a uniform permanent load g and a linear analysis 

is used. The arches considered are:

• two-hinged arch

• clamped arch

To isolate the effect of the rise-to-span ratio f / l, the 

following assumptions are made:

→ H/(EA) = const. ∀ f/l, i.e., similar axial deformation 

 = N/(EA) due to arch compression for all f / l ratios

→ radius of gyration i2 = I / A = const, i.e.

→ constant arch height h , arch width b(f/l) 

determined such that H/(E·h·b) = const. ∀ f/l

→ variable self-weight as function of the arch width b

const.

h=const.

b

· ·cg h b DL= + (DL: permanent loads) 

x

( )H g ( )H g

initial geometry

(anti-funicular of

the dead loads)

c

· / 2g l · / 2g l

clamped arch

two-hinged arch
c

4
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Arch bridges – Structural response: Arch support conditions / hinges

Effect of rise-to-span ratio f / l on bending moments

Here, a uniform permanent load g and a linear analysis 

is used. The arches considered are:

• two-hinged arch

• clamped arch

Using these assumptions and equations in the 

numerical example (l=100 m; h=1.20 m; DL = 140 kN/m), 

the following results are obtained (see graphs):

• The rise-span ratio f / l is highly relevant, having a 

strong impact on structural behaviour, particularly for 

small values of f / l  (low arches)

• Bending moments increase exponentially with 

smaller values of  f / l, particularly pronounced for  

f / l < 1/10. For f / l =1/15, bending moments are up 

to 15 times higher than for f / l = 1/5.

• The crown displacement also grows progressively as 

f / l decreases, especially for f / l < 1/10

• Clamped and two-hinged arches show similar 

tendencies.
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Arch bridges – Structural response: Arch support conditions / hinges

Effect of rise-to-span ratio f / l on bending moments

Here, a uniform permanent load g and a linear analysis 

is used. The arches considered are:

• two-hinged arch

• clamped arch

Note that similar results are obtained when the arches 

are subjected to horizontal displacements of the 

supports.

The resulting bending moments, for a low arch (rise-

span ratio lower than 1/10), may exceed the moments 

produced by the gravity loads.

Conversely, the influence of imposed deformations are 

relatively small in arches which rise-span ratios > 1/7.

The numerical results correspond closely to the 

approximation (slide 55) for EA=const., i.e.

𝛿𝑐 ≅
𝐻( ǉ𝑔)

𝐸𝐴𝐴,𝑐 ∙ 𝑙 ∙
1+3 Τ𝑓 𝑙 2

4 Τ𝑓 𝑙
is a good approximation.
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(due to N, imposed deformation  or 
horizontal support displacements l)
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Arch bridges – Structural response: Arch support conditions / hinges

Permanent load + imposed deformation

1st and 2nd order analysis

• three-hinged arch

• two-hinged arch

• clamped arch

Imposed deformations never act alone. Rather, other 

actions are present, e.g. permanent loads or traffic 

loads. Consequently, the deformations caused by 

imposed deformations (change of geometry) produce 

an increase of the internal actions (bending moments). 

For this study, aa low arch (f / l =1/15) is chosen in 

order to accentuate the nonlinearity effects.

Arch geometry and loads :

→ l = 100 m; f = 6.67 m; f / l =1/15

→ cross-section: h x b = 1.2 m x 5.4 m

→ uniform permanent load: g = 200 kN/m

→ imposed deformation:  = -1000  (temp. + creep)

200 /g kN m=

x

( )H g ( )H g

10000 kN 10000 kN

c

1.2

5.4

f / l = 1 / 15

100

6.67

initial geometry

1000 = − 

2

( ) ( ) cos

( ) 16667 
8

N g H g

g l
H g kN

f

= −


 =





(1 ): ( ) 37500 

(2 ): ( ) 41356 

H g kN

H g kN

 =

 =
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Arch bridges – Structural response: Arch support conditions / hinges

Permanent load + imposed deformation

1st and 2nd order analysis

• three-hinged arch

• two-hinged arch

• clamped arch

The figures compare the deflections and bending 

moments of the arches.

The three-hinged arch is the most flexible of all arches. 

The crown deflection (2nd order) is roughly 1.4 and 1.7 

times larger than in the clamped and two-hinged 

arches, respectively. It is more sensitive to geometrical 

nonlinearity and, therefore, has a greater risk of 

instability.

The bending moments in the clamped arch are higher

than the other arches and, similar to the two-hinged 

arch, there is no significant difference between 1st

order and 2nd order results.
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Arch bridges – Structural response: Arch support conditions / hinges

Permanent load + imposed deformation

1st and 2nd order analysis

• three-hinged arch

• two-hinged arch

• clamped arch

Instability and critical load gcr :

Instability is reached quickly in the three-hinged arch.

The critical load gcr is only 1.3 times higher than the 

permanent load g.

The clamped arch is the most stable → instability is 

reached at a critical load gcr 5 times higher than the 

permanent load g.

The two-hinged arch is in an intermediate position →

instability is reached at a critical load gcr 2.5 times

greater than the permanent load g.
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clamped arch
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Arch bridges – Structural response: Arch support conditions / hinges

Permanent load + imposed deformation

1st and 2nd order analysis

• reinforced concrete

• three-hinged arches → two-hinged arches

• central span: 72.5 m

• f / l =  1 / 15

Le Veurdre bridge, France, 1910. Eugène Freyssinet
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