Advanced Structural Concrete

Information Sheet: Nodal Zone Verification ${ }^{1}$

(101-0127-00L)

For practice, the stresses in the struts are usually assumed to be equal and the width is adapted accordingly. This leads to a biaxial uniform stress state ${ }^{2}$: $\sigma_{1}=\sigma_{2}=f_{c}$, which simplifies the verification.

For a general nodal zone $\left(\sigma_{A} \neq \sigma_{B} \neq \sigma_{C}\right)$, the approach of the verification is explained as follows. First, the acting forces on the nodal zone need to be in equilibrium. At discontinuity lines, normal and shear stresses, σ_{n} and τ_{n}, need to be in equilibrium as well.

$$
F_{C}=\sigma_{C} \cdot b_{C}
$$

Approach:

1. Draw the Mohr's circles of each acting strut. Here $\sigma_{1}=0$ is assumed, but this does not need to be the case.
2. For each strut, find the corresponding pol Q_{i}. The pol is the intersection of the Mohr's circle and the principal direction 3 of each strut starting at σ_{1} (if starting at σ_{3} it would be principal direction 1). The pol Q_{i} is the point on the Mohr's circle, around which stresses rotate.
3. With the help of the pol, find the point $\mathrm{S}_{i}\left(\sigma_{n i}, \tau_{n i}\right)$ which is the intersection of the Mohr's circle and the line L_{i}, parallel to the discontinuity line of the node boundaries, passing through the corresponding pol Q_{i}. The intersection of all L_{i} is the pol Q of the final Mohr's circle. All points S_{i} lie on the Mohr's circle of the nodal zone.
4. Finally, the Mohr's circle of the nodal zone can be drawn and the corresponding compressive stresses σ_{1} and σ_{3} can be read from the diagram.
5.

[^0]
[^0]: ${ }^{1}$ Presented in Lecture 2.1, Slide 39
 ${ }^{2}$ Often referred to as "hydrostatic" for simplicity although the stress state is not hydrostatic, because the stress perpendicular to the membrane plane is $\sigma_{3}=0$.

