TERMINOLOGY 1 #### **Technical terms** 1.1 In the present code the specific technical terms defined below are used. General technical terms used here are defined in SIA 260 and SIA 261. Additive Zusatzstoff ajout aggiunta Fine pozzuolanic or latent hydraulic substance for influencing concrete properties. Admixture Zusatzmittel adjuvant additivo Chemical substance which is added during the mixing process to influence the concrete or grout properties. Aggregate Gesteinskörnung granulat aggregati Mixture of grains of different sizes, obtained from natural sources or through the recycling of construction materials or artificially produced, for use in concrete or mortar. Anchorage length Verankerungslänge longueur d'ancrage lunghezza d'ancoraggio Transmission length required to transfer the reinforcing force to the concrete. Anchorage zone Ankerzone zone d'ancrage zona di ancoraggio Highly stressed zone in the immediate vicinity of a prestressing anchorage. Bar bundle Stabbündel groupement de barres fascio d'armature Two or three contacting reinforcing bars running in the same direction. Bar spacing Stababstand espacement des barres interasse dei ferri Distance between axes of parallel reinforcing bars. Compression field Druckfeld champ de compression campo di compressione Parallel stress field of uniaxial compression with uniform stress intensity. Concrete Beton héton calcestruzzo Construction material produced of cement, aggregate (maximum grain size greater than 4 mm) and water, possibly with the addition of additives and admixtures, which acquires its properties through the hydration of the cement. Concrete overlay Überbeton Layer of concrete applied to an existing structural member. surbéton calcestruzzo di ricoprimento Cover concrete Überdeckungsbeton béton d'enrobage calcestruzzo di copriferro Layer of concrete between reinforcement and concrete surface. Cover of reinforcement Bewehrungsüberdeckung enrobage de l'armature copriferro Distance between the surface of the reinforcement and the surface of the concrete. Cover reinforcement Überdeckungsbewehrung armature de peau armatura del copriferro Additional reinforcement within the cover concrete. Creep Kriechen fluage scorrimento viscoso Strain increase due to persistent stress. Designed concrete Beton nach Eigenschaften béton à performance spécifiée calcestruzzo a prestazione garantita Concrete whose required properties and additional requirements are the responsibility of the producer. Deviator Umlenkelement élément de déviation deviatore Structural member for deviating prestressing tendons. Duct Hüllrohr gaine guaina Metal or plastic tube for sheathing prestressing steel. Edge distance of reinforcement Randabstand der Bewehrung distance au nu de l'armature distanza armatura - superficie Distance between the axis of the reinforcement and the surface of the concrete. Edge element Randelement zone de bord zona di borda Strengthened edge zone of a shear wall. Effective depth statische Höhe hauteur statique altezza statica Distance between the axis of gravity of the tensile reinforcement and the compressed edge of the cross-section. Endurance limit Dauerfestigkeit limite de fatigue limite di fatica Fatigue strength corresponding to an unlimited number of stress reversals. Equipment Ausrüstung equipement infrastruttura Parts of the construction works, such as carriageway joints, bearings, drains, railings etc., which are usually installed afterwards. Exposure class Expositionsklasse classe d'exposition classe d'esposizione Classification category for structural members which describes the environmental influences and the resulting risks with respect to durability. Fan Fächer éventail ventaglio Fan-shaped stress field of uniaxial compression with variable stress intensity. Fatigue strength curve Betriebsfestigkeitskurve courbe de résistance à la fatigue curva della resistenza alla fatica Double logarithmic representation of the fatigue strength as a function of the number of stress reversals. Fibre reinforced concrete Faserbeton béton renforcé de fibres calcestruzzo fibrorinforzato Concrete with reinforcement in the form of admixed metallic, non-metallic, inorganic or organic fibres, which in comparison with the maximum grain size of the aggregate are of similar length and very thin. Finite fatigue life Zeitfestigkeit résistance à la fatigue resistenza alla fatica Fatigue strength for a limited number of stress reversals. Force spreading zone Kraftausbreitungszone zone de diffusion des forces zona di diffusione della forza Zone adjacent to an anchorage zone which serves to spread the prestressing force within the structural member. Fresh concrete Frischbeton béton frais calcestruzzo fresco Concrete after mixing, as long as it can be worked, prior to achieving stability of form. Grout Füllgut matériau d'injection materiale d'iniezione Construction material for filling ducts. Hardened concrete Festbeton béton durci calcestruzzo indurito Concrete which has largely or completely hardened. Heavyweight concrete Schwerbeton béton lourd calcestruzzo pesante Concrete with a density of over 2600 kg/m³. Lightweight concrete Leichtbeton béton léger calcestruzzo leggero Concrete with a density of 800 to 2000 kg/m³. Mortar Mörtel mortier malta Construction material produced of cement, aggregate (maximum grain size no greater than 4 mm) and water, possibly with the addition of additives and admixtures. Node Knoten nœud nodo Highly bi- or triaxially stressed zone within a stress field. Normalweight concrete Normalbeton béton normal calcestruzzo normale Concrete with a density of 2000 to 2600 kg/m³. Overstrength Überfestigkeit surrésistance sovraresistenza Difference between the characteristic strength value and the strength assumed under earthquake action. Precast concrete element Betonfertigteil élément préfabriqué elemento prefabbricato Reinforced or prestressed concrete member which is prefabricated at a factory or on site and is subsequently installed in its final position. Prescribed concrete Beton nach Zusammensetzung béton à composition prescrite calcestruzzo a composizione Concrete whose composition and constituent materials are prescribed to the producer. **Prestress** Vorspannung précontrainte precompressione Effect of the forces applied to a structure or structural member in a controlled manner through the tensioning of prestressing steel. Prestressed concrete Spannbeton béton précontraint calcestruzzo precompresso Concrete whose reinforcement consists partially of tensioned prestressing steel. Prestressing anchorage Spannverankerung ancrage de précontrainte testa d'ancoraggio Structural member for applying and anchoring a prestressing force. Prestressing force Spannkraft force de précontrainte forza di precompressione Tensile force which is applied to prestressing steel for the purpose of prestressing. Prestressing steel Spannstahl acier de précontrainte acciaio di precompressione Steel in the form of wires, strands and bars which is suitable for use in a prestressing tendon or for pretensioning. Prestressing system Spannsystem système de précontrainte sistema di precompressione Prestressing tendons and deviators together with associated equipment such as jacks and grouting equipment. Prestressing tendon Spannglied unité de précontrainte cavo di precompressione Reinforcing element consisting of tensioned prestressing steel, prestressing anchorages, duct and grout. Pretensioning Spannbettverfahren précontrainte par fils adhérents pre-tensione Prestressing method in which the prestressing steel is tensioned before concreting. Reinforced concrete Stahlbeton béton armé calcestruzzo armato Concrete whose reinforcement consists of reinforcing steel. Reinforcement Bewehrung armature armatura Insertions in concrete, usually of reinforcing steel and prestressing steel. Reinforcing steel Betonstahl acier d'armature passive acciaio d'armatura Steel which is suitable for use as non-prestressed reinforcement. Relative rib area bezogene Rippenfläche surface relative projetée des nervures superficie relativa delle nervature Ratio between the projected area of the ribs and the surface area of reinforcing steel bars. Relaxation Relaxation relaxation rilassamento Stress decrease in prestressed steel whose length is kept con- stant. Shotcrete Spritzbeton béton projeté calcestruzzo spruzzato Concrete produced by dry- or wet-mixing and placed and compacted by spraying. Shrinkage Schwinden retrait ritiro Decrease in the volume of concrete caused by drying, and, at low water-cement ratios, due to hydration of the cement. Steel fibre reinforced concrete Stahlfaserbeton béton renforcé de fibres métalliques calcestruzzo con fibre d'acciaio Fibre reinforced concrete with steel fibre reinforcement. Stress field Spannungsfeld champ de contrainte campo di tensione Model of the force flow within the structural member or structure, represented by nodes, compression fields, struts, fans and ties. Stress redistribution Schnittgrössenumlagerung redistribution des sollicitations ridistribuzione degli sforzi Change in the internal forces and moments of a statically indeterminate system determined on the assumption of linear elastic behaviour, characterised by superposition of a self-equilibrating stress state. Strut Druckstrebe bielle de compression biella in compressione Narrow compression field with high stress intensity. Verification section Nachweisschnitt section de contrôle sezione di verifica Section for which the punching resistance is determined. # 1.2 Symbols ### 1.2.1 Latin upper-case letters A ductility class, stress limit for crack formation A_c cross-sectional area of the concrete A_{cc} cross-sectional area confined by stirrups A_{c0} loaded partial area A_{c1} total area with the same centre of gravity as A_{c0} $A_{\rm eff}$ effective cross-sectional area A_k effective cross-sectional area enclosed by longitudinal reinforcement A_{nom} nominal support area A_p cross-sectional area of the prestressing steel A_{p1} cross-sectional area of an individual prestressing tendon A_s cross-sectional area of the reinforcing steel A_{sc} cross-sectional area of the stirrups in the case of circular cross-sections (in relation to the area ds_c A_{sw} cross-sectional area of the stirrups A_{sy} , A_{sz} cross-sectional area of the stirrups in y- and z-direction (in relation to the areas as_c and bs_c) B reinforcing steel, ductility class, stress limit for crack formation C concrete, consistency class (degree of compactability), ductility class, stress limit for crack for- mation, cold-drawn (prestressing steel) Cl class of chloride content D density class for lightweight concrete D_{max} maximum grain size of aggregate E_{cd} dimensioning value of the modulus of elasticity of concrete E_{cm} mean value of the modulus of elasticity of concrete $E_{\it lcm}$ mean value of the modulus of elasticity of lightweight concrete E_p mean value of the modulus of elasticity of prestressing steel E_s mean value of the modulus of elasticity of reinforcing steel F consistency class (flow diameter) *F_c* force in the flexural compression zone F_{cw} concrete compressive force in the web F_p force in the prestressing steel F_{pRd} dimensioning value of the resistance of the prestressing steel F_t tensile force in the reinforcing steel F_{tVd} dimensioning value of the longitudinal tensile force due to shear force H hot-rolled (prestressing steel) I profiled (prestressing steel) LC lightweight concrete M_d dimensioning value of bending moment M_r bending moment at which the first crack appears M_{Rd}^{+} maximum bending resistance $M^{+}_{Rd,1}$ maximum bending resistance at head of column $M^{+}_{Rd,2}$ maximum bending resistance at base of column N_d dimensioning value of normal force N_D 5·10⁶ stress reversals N_{fat} 2·10⁶ stress reversals P prestressing force P_d dimensioning value of prestressing force P_k characteristic value of prestressing force P_{max} maximum force in the prestressing steel during tensioning P_{∞} prestressing force at time $t = \infty$ Q_{fat} fatigue action R fire resistance class, ribbed (prestressing steel) R ultimate resistance *R*_d dimensioning value of ultimate resistance RH relative humidity S consistency class (slump) S7 seven-wire strand T temperature T_d dimensioning value of torsional moment T1 profiling type (prestressing steel) V_d dimensioning value of shear force $V_{d,i}$ dimensioning value of shear force in panel i V_d^{\dagger} increased shear force V_{Rd} dimensioning value of the shear resistance $V_{Rd,c}$ dimensioning value of the resistance of the concrete compression field V_{Rds} dimensioning value of the resistance of the stirrup reinforcement X... exposure class (X0, XC, XD, XS, XF, XA) Y prestressing steel ### 1.2.2 Latin lower-case letters a dimension a_c dimension of the confining stirrups a_d dimensioning value of a geometrical property a_{min} smallest cross-sectional dimension a_1 , a_2 width of the area A_{c0} or A_{c1} b dimension *b_c* dimension of the confining stirrups $b_{\it eff}$ effective slab width $b_{eff,i}$ part of the effective slab width b_i half of distance between two adjacent webs b_w web width, thickness of edge element $b_{w,nom}$ nominal value of web width b_{w0} thickness of shear wall b_1 , b_2 length of the area A_{c0} or A_{c1} c integration factor c_{nom} cover of reinforcement d effective depth, mean effective depth in the case of several layers of reinforcement, diameter d' distance of compression reinforcement from compression edge d_c diameter of the spiral reinforcement d; mandrel diameter for bends d_k maximum diameter which can be inscribed within the area A_k effective depth in relation to the reinforcement in x- or y-direction e eccentricity e_d dimensioning value of load eccentricity e_{0d} eccentricity due to geometrical imperfections e_{1d} eccentricity of action \mathbf{e}_{2d} eccentricity due to deformation f_{bd} dimensioning value of bond stress $f_{bd}(t)$ dimensioning value of bond stress at time t f_{cd} dimensioning value of concrete compressive strength f_{ck} characteristic value of cylinder compressive strength (5% fractile) $f_{ck.cube}$ characteristic value of cube compressive strength f_{cm} mean value of cylinder compressive strength f_{ctd} dimensioning value of concrete tensile strength $f_{ctk~0.05}$ 5% fractile value of concrete tensile strength $f_{ctk~0.95}$ 95% fractile value of concrete tensile strength f_{ctm} mean value of concrete tensile strength f_{lctm} mean value of tensile strength of lightweight concrete *f_p* tensile strength of prestressing steel f_{pd} dimensioning value of yield strength of prestressing steel f_{pk} characteristic value of tensile strength of prestressing steel $f_{p0.1}$ 0.1% strain limit stress of prestressing steel $f_{p0.1k}$ characteristic value of yield strength of prestressing steel f_R relative rib area f_s yield strength of reinforcing steel f_{sd} dimensioning value of yield strength of reinforcing steel f_{sk} characteristic value of yield strength of reinforcing steel $f_{\rm s0.2}$ 0.2% strain limit stress of reinforcing steel f_t tensile strength of reinforcing steel f_{tk} characteristic value of tensile strength of reinforcing steel $(f_t/f_s)_k$ characteristic value of ratio (f_t/f_s) h height, height of structural member h_{pl} height of plastic region *h*_s storey height h_w height of a shear wall h_0 relative thickness of structural member = $2A_c/u$ k_c factor for determining concrete strength $k_{c\sigma}$ factor for reduction of normal stress $k_{c\tau}$ factor for reduction of shear stress limit k_d factor for determining the shear resistance of slabs k_E factor for determining the modulus of elasticity of concrete k_e factor for reduction of the length of the verification section k_f reduction factor for reinforcing steel crossing joints k_r factor for determining the punching resistance of slabs k_s strain-hardening ratio of reinforcing steel k_T factor for taking into account temperature k_t factor for taking into account the dimensions of the structural member k_{v} factor for taking into account deformations $k_{\scriptscriptstyle ho}$ factor for taking into account the reinforcement ratio of slabs k_{σ} factor for calculating the stress-strain diagram of concrete ${\it k}_{\xi}$ amplification factor for stresses in reinforcing steel k_{\varnothing} reduction factor for bent reinforcing bars l length, span $l_{\it hd}$ anchorage length $l_{bd,0}$ basic value of anchorage length of prestressing steel (pretensioning) $l_{\it bd.net}$ basic value of anchorage length l_c length of edge element l_{cr} buckling length of compression member l_i span i $l_{\rm w}$ length of a shear wall $l_{\rm x}, \, l_{\rm v}$ span in x-, y-direction l_0 distance between points of zero moment m slope of the fatigue strength curve, number of compression members m_d dimensioning value of bending moment per unit length m_{Dd} dimensioning value of decompression moment m_{Pd} dimensioning value of bending moment in the column strip due to prestressing m_{Rd} dimensioning value of the bending resistance per unit length reference moment per unit length m_{0d} n number, number of storeys response factor for structures subjected to earthquake action q radius radius of plastic region s bar spacing spacing of confining stirrups Sc t time, duration, age, dimension effective panel thickness t_s age of concrete at onset of shrinkage age of concrete at initial loading t_0 circumference, circumference of the verification section, deviation force dimensioning value of shear force per unit length V_d maximum shear force per unit length due to permanent and fatigue actions $V_{d,max}$ minimum shear force per unit length due to permanent and fatigue actions $V_{d,min}$ dimensioning value of shear or punching resistance per unit length V_{Rd} deflection w deflection, calculated for the uncracked state, taking into account creep of concrete W_{co} greatest deflection assumed on reaching the ultimate resistance W_R depth of the flexural compression zone, coordinate X coordinate lever arm of the internal forces, coordinate z lever arm of the longitudinal forces in the panel i Greek letters α compression field inclination compression field inclination in the flange $\alpha_{\scriptscriptstyle f}$ compression field inclination in the case of fatigue action $lpha_{\it fat}$ base inclination of compression members α_i mean angle of inclination of groups of compression members α_{im} α_{T} coefficient of thermal expansion β inclination of a stirrup reinforcement $\beta(t_0)$ factor to account for the age of the concrete at initial loading $\beta(t-t_0)$ factor to account for the duration of loading $\beta(t-t_s)$ factor to account for the onset of shrinkage β_{fc} factor to account for the concrete strength inclination of the prestressing tendons in relation to the reference axis β_p γ_c γ_{cE} γ_P resistance factor for concrete partial factor for the modulus of elasticity of concrete load factor for an action due to prestressing 1.2.3 $\gamma_{\!s}$ $\,$ resistance factor for reinforcing steel and prestressing steel $\Delta\sigma_{ed}$ equivalent stress difference (= $\lambda\Delta\sigma_{sd}$) $\Delta\sigma_{p}$ stress increase in prestressing steel $\Delta\sigma_{p,D}$ endurance limit of prestressing steel $\Delta\sigma_{pd,D}$ dimensioning value of endurance limit of prestressing steel $\Delta\sigma_{pd,fat}$ dimensioning value of fatigue resistance of prestressing steel $\Delta\sigma_{p,fat}$ nominal fatigue resistance of prestressing steel $\Delta\sigma_{pr}$ stress variation due to relaxation of the prestressing steel $\Delta\sigma_{sd}$ absolute value of the stress difference between maximum and minimum stress under fatigue action $\Delta \sigma_{sD}$ endurance limit of reinforcing steel $\Delta\sigma_{sd,D}$ dimensioning value of endurance limit of reinforcing steel $\Delta\sigma_{sd,fat}$ dimensioning value of fatigue resistance of reinforcing steel $\Delta\sigma_{sd,i}$ individual stress difference due to fatigue action $\Delta\sigma_{s.fat}$ nominal fatigue resistance of reinforcing steel $\Delta \varphi$ unintended deviations per unit length $\Delta V_{\textit{Rd,p}}$ $\phantom{V_{\textit{Rd,p}}}$ vertical component of force in the inclined prestressing tendon arepsilon amplification factor, axial strain $arepsilon_c$ concrete compressive strain $arepsilon_{cc}$ creep strain of concrete $arepsilon_{c\ el}$ elastic strain of concrete ε_{cs} shrinkage strain $arepsilon_{\mathrm{cs},\scriptscriptstyle{\infty}}$ final value of shrinkage $arepsilon_{c_{1d}}$ dimensioning value of concrete compressive strain on reaching f_{cd} $arepsilon_{c2d}$ dimensioning value of ultimate compressive strain of concrete $arepsilon_{c^{\infty}}$ irreversible concrete compressive strain $\varepsilon_{\mathrm sd}$ dimensioning value of strain in the reinforcement ε'_{sd} dimensioning value of strain in the reinforcement in the compression zone $arepsilon_{\it ud}$ dimensioning value of ultimate strain of reinforcing steel or prestressing steel $arepsilon_{uk}$ characteristic value of ultimate strain of reinforcing steel or strain at maximum load for pre- stressing steel ζ ratio of concrete compressive strains η_{fc} conversion factor to account for the more brittle failure behaviour of higher-strength concrete η_{l} conversion factor for the tensile strength of lightweight concrete η_{IE} conversion factor for the modulus of elasticity of lightweight concrete ϑ angle between the main reinforcement and the principal direction of the shear force κ amplification factor to account for higher mode shapes λ operational load factor μ frictional coefficient v_c Poisson's ratio ξ ratio of bond strengths ρ dry density, geometrical reinforcement ratio of the tension zone referred to the effective slab width ρ' geometrical reinforcement ratio of the compression zone σ normal stress σ_{c} normal stress in concrete $\sigma_{\!\scriptscriptstyle cd,max}$ maximum compressive stress in concrete due to permanent and fatigue actions $\sigma_{cd,min}$ minimum compressive stress in concrete due to permanent and fatigue actions σ_d dimensioning value of a normal stress σ_{p} stress in prestressing steel σ_{pd} dimensioning value of stress in prestressing steel to be anchored (pretensioning) σ_{pi} initial stress in prestressing steel $\sigma_{p,max}$ maximum stress in prestressing steel σ_{p0} stress in prestressing steel at time t = 0 $\sigma_{\!\scriptscriptstyle p\infty}$ stress in prestressing steel after deduction of all losses $\sigma_{s.adm}$ stress limit related to cracking σ_1 pressure due to confining reinforcement au_{cd} dimensioning value of shear stress limit $au_{cd,red}$ dimensioning value of the shear strength of a joint $\varphi(t,t_0)$ creep coefficient $arphi_{RH}$ factor to account for relative humidity φ_{x} sum of planned deviation angles up to point x χ_d dimensioning value of maximum curvature $\chi_{d,irr}$ irreversible curvature ω_c mechanical reinforcement ratio of confinement $\omega_{\rm v},\omega_{\rm z}$ mechanical reinforcement ratio of confinement in y- or z-direction ## 1.2.4 Special symbols Ø diameter \emptyset_H external duct diameter $\mathcal{Q}_{\mathit{min}}$ diameter of the thinnest reinforcing bar \mathcal{O}_p equivalent diameter of a prestressing tendon Ø_s diameter of a reinforcing bar \mathcal{Q}_{sl} diameter of the reinforcing bars in longitudinal direction $\mathcal{Q}_{sl,max}$ maximum diameter of the reinforcing bars in longitudinal direction {...} function of the dimensioning values within brackets; depending on the verification, individual or several of these values may not apply.