
5 Slabs

In-depth study and additions to Stahlbeton II
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Learning objectives
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Within this chapter, the students are able to: 

• design and assess slabs with orthogonal and skew reinforcement based on elastic and plastic slab theory 

and thereby

• elaborate on the applicability, accuracy, and limitations of the used approaches. 

• explain the underlying differences of the methods, especially with respect to the treatment of twisting 

moments. 

• illustrate in terms of Mohr’s circles the superposition of the bending resistance of two layers of orthogonal or 

skew reinforcement and explain how it results in the bending moment yield conditions. 

• identify the necessity and how to design edge reinforcement in slab corners and edges. 



Structural analysis / Calculation methods - Overview

Slabs - Basics

Elastic slab theory Plastic slab theory

Solution of the slab

differential equation

Finite Element

Method

Approximate solutions 

with energy (virtual work) methods

Static method of

the theory of plasticity

Kinematic method of

the theory of plasticity

Moment fields

Equivalent frame method

Strip method

Yield line method

simplified

advanced
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Plane elements - Stress resultants

Slabs - Basics

Bending stress

state (slab):

bending moments and

shear forces

Membrane stress

state (membrane element):

membrane forces
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Plane elements - Stress resultants

Slabs - Basics
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Sign convention

• Positive stresses act on elements with positive outer normal direction in 

positive axis direction

• Positive membrane and shear forces correspond to positive associated 

stresses

• Positive moments correspond to positive associated stresses for z > 0

• Indices: 1st index: direction of stress 

2nd index: normal direction of the element at which stress is applied



5 Slabs

In-depth study and additions to Stahlbeton II

5.1 Equilibrium conditions
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Slabs - Equilibrium
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Equilibrium condition for slabs: 

Derivation via equilibrium at the differential slab element:

terms with (dx)2 or (dy)2 neglected

Equilibrium conditions - Cartesian coordinates
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Slabs - Equilibrium
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Bending and twisting moments in any direction j: Principal direction j1 (twisting moments = 0) and principal

moments (Mohr's circle):
2 2cos sin sin 2n x y xym m m m= j + j + j

2 2sin cos sin 2t x y xym m m m= j + j − j

( )sin cos cos 2tn y x xym m m m= − j j + j

1

2
tan 2

xy

x y

m

m m
j =

−

( )
2

2

1,2

4

2 2

x y xyx y
m m mm m

m
− ++

= 2 2sin 2 2sin cos , cos 2 cos sinj = j j j = j − jNB:

Stress transformation: Bending and twisting moments



Principal shear force and associated direction j0

(interpretation with Thales’ circle):

(generally j0  j1)

Slabs - Equilibrium

Shear forces in any direction j:

Stress transformation: Shear forces

cos sinn x yv v v= j + j

sin cost x yv v v= − j + j
2 2

0 x yv v v= +

0tan
y

x

v

v
j =
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support force corner forceshear force in boundary zone

Static method of the theory of plasticity - Explanation of load-bearing effect in the region of slab edges, which is based only on 

equilibrium considerations:

→ From equilibrium in a narrow edge zone of the slab, one gets the edge transverse force: Vt = -mtn

→ If: The slab edge is stress-free and the stresses t occurring in the edge zone do not change in the t direction (Clyde, 1979).

→ From the boundary shear force Vt = -mtn , one gets the corner forces 2 mtn and the contribution of mtn,t to the support force.

Slabs - Boundary conditions
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Boundary conditions based on equilibrium



→ Boundary conditions based on equilibrium considerations:

support force

Slabs - Boundary conditions
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Boundary conditions on the basis of equilibrium considerations

• Clamped edge: mn, mtn and vn arbitrary

• Simply supported edge: mn = 0, resulting support force:

• Free edge: mn = 0, disappearing support force:
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lateral force in boundary zone
force flow in slab corner

Slabs - Boundary conditions

Edge reinforcement

If twisting moments are calculated along simply supported and free edges, a reinforcement must be arranged to carry Vt = -mtn. 

Figure (corner, pure twisting):

→ Upper and lower side: concrete struts perpendicular to each other, inclined at 45° to the edges of the slabs, support of 

components normal to the edge by the longitudinal reinforcement. 

→ Components in the direction of the slab edges are transferred to the edge members by inclined concrete compression 

struts. Vertical components correspond to the edge shear forces Vt = -mtn

→ Carrying Vt = -mtn with shear reinforcement or correspondingly detailed bending reinforcement (e.g. «hairpins»).

2 mnt
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discontinuity line

Slabs - Boundary conditions

Discontinuities

Static discontinuity lines are admissible inside the slab (↔ Equivalence of twisting moments at the slab edge and edge shear 

forces, joining two free slab edges).

At discontinuity lines

→ Bending moments mn must be continuous (mn
+ = mn

-)

→ Twisting moments mnt and shear forces vn may be discontinuous (jump) (mnt
+ ≠ mnt

-, vn
+ ≠ vn

-)

Thus, for a static discontinuity line along which an edge shear force Vt is applied, the following conditions apply: 

n nm m− +=

t nt ntV m m+ −= −

t
n n

V
v v

t

− +
= −



05.12.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 13



5 Slabs

In-depth study and additions to Stahlbeton II

5.2 Yield conditions
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Slabs - Yield conditions

Yield conditions of Tresca and von Mises for isotropic slabs (steel etc.)

(not suitable for reinforced concrete, even with "isotropic reinforcement"!)

In the fully plasticised state (or rigid-plastic behaviour), the stress state 

on each side of the median plane is constant → yield condition 

analogous to the plane stress state:

Yield regimes according to Tresca: 

(2 elliptical cones, elliptical cylinder)
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Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

Bending resistances mx,u and my,u of an orthogonally reinforced slab (reinforcement in x- and y-direction):

By superposition of the bending resistances in the reinforcement directions and transformation in any direction (analogous to

the stress transformations) the bending and twisting moments mn , mt and mnt in n- and t-direction (statically admissible stress 

state) are obtained:

Cross-Section x-direction Cross-Section y-direction

x sda f

'x sa 

cdf

,x um
x

xc

y sda f

'y sa 

cdf

,y um
y

yc
Without normal forces, the compression 

zone heights cx and cy and thus mx,u and 

my,u result from equilibrium.

Since reinforcement is orthogonal: , 0xy um =

2 2cos sinn xu yum m m=  j +  j

( ) sin cosnt yu xum m m= −  j j

2 2sin cost xu yum m m=  j +  j

All membrane forces disappear:

0t n ntn n n= = =
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Slabs - Yield conditions
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Yield conditions for reinforced concrete slabs

The resistance is checked on the basis of the normal moments ("normal moment yield condition"). 

If the compression zone depths are equal, i.e. cx = cy the complete solution results: 

• Statically admissible stress state (equilibrium)

• Kinematically compatible failure mechanism (yield line, see later)

For cx ≠ cy the statically admissible stress state provides a lower limit for the ultimate load: 

2 2

, , ,cos sinn u x u y um m m j + = j

2 2

, , ,sin cost u x u y um m m j + = j

2 2

, , ,' ' cos ' sinn u x u y um m m j= +  j

2 2

, , ,' ' sin ' cost u x u y um m m j= +  j

2 2

, , ,cos sinn u x u y um m m j +  j

2 2

, , ,sin cost u x u y um m m j +  j

2 2

, , ,' ' cos ' sinn u x u y um m m j +  j

2 2

, , ,' ' sin ' cost u x u y um m m j +  j

Bending resistance for positive bending 

moments

Bending resistance for negative bending moments («‘» )

(the sign of the bending resistance is defined positive)

The differences with regard to the compression zone depths in x- and y-direction are usually small so that the inequality sign 

may be suppressed with good approximation.

NB: With a definition range for the angle j of {0 ≤ j ≤ p}, the relationship for mn is sufficient.



Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

The action mn in the relevant direction ju is set equal to the resistance mn,u obtaining:

Considering that the condition mn,u ≥ mn must be satisfied for all directions j, the result is (*):

(*) In the relevant direction ju (point of contact of mn,u (j) and mn (j)) the difference mn,u − mn is minimum, thus:

after some transformation the specified relations follow by resubstitution.

!
2 2 2 2

, ,,cos sin cos sin 2 sin cosx u u y u u x u y u un xy un umm m m m mm j +  j = =  j +  j +  j j=

for positive 

bending 

moments:

, tanx u x xy um m m= +  j

, coty u y xy um m m= +  j

( )
( )

,

,

tan
x u x

u

y u y

m m

m m

−
j =

−

,' cot 'y u y xy um m m= − −  j

,' tan 'x u x xy um m m= − −  j

( )
( )

,

,

'
tan '

'

x u x

u

y u y

m m

m m

+
j =

+

for negative 

bending 

moments:

resistance actions resistance actions

( ) ( ) ( ) ( )( ) ( ), , , , ,min! 0, ( ) ( ) cot tann u n n u n n u n y u x u y x xy u um m m m m m m m m m m
  

j − j = → j − j = j = j → − = − + j − j
j j j
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,'n um
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Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

Bending moments mn as a function of j → Controlling direction ju

j1, j2 → Directions in which the acting positive or negative moment becomes maximum (principal directions for mn)
ju, j’u → Directions in which the action curve touches the resistance curve, i.e. mn = mn,u

Generally j1 ≠ ju resp. j2 ≠ j’u → Dimensioning of mn,u based on principal moment m1 is not conservative!
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Direction of positive 

yield line

Direction of negative 

yield line



0Y =

' 0Y =

Slabs - Yield conditions

Normal moment yield criterion

If ju and j’u are eliminated from the previous equations, the normal moment yield criterion results:

( )( )2

, , 0xy x u x y u yY m m m m m= − − − =

( )( )2

, ,' ' ' 0xy x u x y u yY m m m m m= − + + =

≥ 0 ≥ 0

≥ 0 ≥ 0

If               and               , the yield condition is fulfilled.    0Y  ' 0Y 

The normal moment yield condition forms two elliptical cones in 

(mx, my, mxy) space. On the conical surfaces x y = 0 (from 

yield law), i.e. one of the two principal curvatures disappears. 

The compatible mechanisms therefore correspond to 

developable surfaces.

, ,'n u n n um m m−  
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Slabs - Yield conditions

Normal moment yield criterion

If ju and j’u are eliminated from the previous equations, the normal moment yield criterion results:

( )( )2

, , 0xy x u x y u yY m m m m m= − − − =

( )( )2

, ,' ' ' 0xy x u x y u yY m m m m m= − + + =

≥ 0 ≥ 0

≥ 0 ≥ 0

Dito, with notations according to SIA 262:

, ,'n u n n um m m−  

( )( )2

, , , , , 0xy d x Rd x d y Rd y dY m m m m m= − − − =

( )( )2

, , , , ,' ' ' 0xy d x Rd x d y Rd y dY m m m m m= − + + =

≥ 0 ≥ 0

≥ 0 ≥ 0
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1k =

Slabs - Yield conditions

The parameter k can be freely selected and the reinforcement can be 

designed directly. If k = 1, the linearised yield condition follows, which is also 

used by many FE programs.

,x u x xym m k m + 

,

1
y u y xym m m

k
 + 

,

1
'

'
y u y xym m m

k
 − + 

,' 'x u x xym m k m − + for positive 

bending 

moments:

for negative 

bending 

moments:
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Design moments

The normal moment yield criterion in parametric form: with                  and with             

The resulting design moments:

tan uk = j ' tan 'uk = j



Slabs - Yield conditions

Design moments

The normal moment yield condition in parametric form: with                  and with             

The resulting design moments:

,x u x xym m k m + 

,

1
y u y xym m m

k
 + 

,' 'x u x xym m k m − + for positive 

bending 

moments:

for negative 

bending 

moments:

NB: For several loads or load combinations the required bending resistance (mx, my)Rd should be determined for concomitant

internal forces (mx, my, mxy)d, i.e., stress resultants obtained for the same load combination. The determination of the required

bending resistances (mx, my)Rd implemented in many FE programs from separately determined "limit values" for non-

associated mx,d, my,d and mxy,d is often strongly on the safe side.

, , ,x Rd x d xy dm m k m + 

, , ,

1
y Rd y d xy dm m m

k
 +  , , ,

1
'

'
y Rd y d xy dm m m

k
 − + 

, , ,' 'x Rd x d xy dm m k m − + 

Dito, with notations according to SIA 262:
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Slabs - Yield conditions

In-class exercise

Given: Square slab supported at 3 corners with side length l, acting corner force Q = 100 kN

Desired: Design moments for reinforcement in coordinate direction.

100 kNQ =

a) x

y
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corner force

Hint: from the boundary shear force Vt = -mtn , 

one gets the corner forces 2 mtn



Slabs - Yield conditions

Design moments - Example

Given: Square slab supported at 3 corners with side length l, acting corner force Q = 100 kN

Desired: Design moments for reinforcement in coordinate direction and at 45° to it

100 kNQ =

a) x

y

Linearised yield conditions (k = 1):

, 0 50 50 kNx u x xym m k m +  = + = ,

1
0 50 50 kNy u y xym m m

k
 +  = + =

,' ' 0 50 50 kNx u x xym m k m − +  = + = ,

1
' 0 50 50

'
 kNy u y xym m m

k
 − +  = + =

→ All four reinforcement layers (top and bottom in x- and y-direction) have to be dimensioned for 50 kNum 

Action: Corner force

(→ pure twisting with respect to the reinforcement directions (x,y))

2 100xym Q= =  kN

0x ym m= =

50xym =  kN
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100 kNQ =

x

y

t

n

Slabs - Yield conditions

Design moments - Example

b) Rotation of the reinforcement by 45° to the n-t-direction

, 50 0 50 kNn u n ntm m k m +  = + = ,

1
50 0 50 kN 0t u t ntm m m

k
 +  = − + = − →

,' ' 50 0 50 kN 0n u n ntm m k m − +  = − + = − → ,

1
' 50 0 50

'
 kNt u t ntm m m

k
 − +  = + =

→ Half the amount of reinforcement is sufficient for the reinforcement in the principal moment direction: lower reinforcement in the n-direction 

and upper reinforcement in the t-direction require each:                          (negative design moments: no reinforcement required).

→ "Trajectory reinforcement" optimal, but rarely practicable (complicated reinforcement layout, principal directions change due to changing 
actions)

50 kNum 

2 2cos sin sin 2 50n x y xy xym m m m m= j + j + j = =  kN

Actions:

(Reinforcement arranged in principal moment directions!)

2 2sin cos sin 2 50t x y xy xym m m m m= j + j − j = − = −  kN

( )sin cos cos 2 0nt y x xym m m m= − j j + j =

45j = 

Linearised yield conditions:
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Slabs - Yield conditions

Pure twisting

X

Y

2 1

,xy xym

,

,

x y

x ym m

 

( )0xy x y  =  =

2

−
1

+
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m n v v
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
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m n v

z v
+ +



2 2

0 x yv v v= +

1

0 tan ( )y xv v−j =

x

y z



0v

0 cotv 

0 cot

2

v cotz 

0 cot

2

v 

z

Slabs - Yield conditions

Equilibrium solution for general shell loading (statically admissible stress state): 

• Sandwich covers carry bending and twisting moments (substituted by statically equivalent force couples m/z in bottom and top 

cover) as well as possible membrane forces (substituted by statically equivalent forces n/2 in each cover)

→ In-plane loading of each cover, treatment as membrane elements with corresponding reinforcement, dimensioning with yield

conditions for membrane elements 

→ Suitable for the design of generally loaded shell elements (8 stress resultants)

• Sandwich core absorbs shear forces

→ Sandwich core absorbs principal transverse force v0 in the direction j0 (see transverse shear in slabs)

NB: High membrane (compressive) forces: core can also be used for this (note interaction with v)
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Sandwich model
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2 2

0 x yv v v= +

1

0 tan ( )y xv v−j =

x

y z
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xym
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−

xym

zxym

z
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Slabs - Yield conditions

→ Slabs under pure bending without shear reinforcement:

nx = ny = nxy = 0, v0d  ≤ vRd = kd cd dv

→ Terms with nx, ny, nxy are zero

→ Terms with vx, vy  are omitted if an uncracked core is assumed.

→ Yield conditions for slabs based on the sandwich model = simplification of the general case of a shell element with eight stress resultants 

(slab: only bending and twisting moments considered, consideration of transverse (slab) shear forces → see shear force in slabs)
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Sandwich model



Slabs - Yield conditions

yv
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z

xv xm
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z

z

2 2

0 x yv v v= +

1

0 tan ( )y xv v−j =

x

y z

z

→ Reinforcement of the sandwich covers = yield conditions for slabs according to static method:

' '

'

'

1
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y xy
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y xy
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 +

 +

 − + −

 − + −
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z
−

xu sx sd yu sy sd

xu sx sd yu sy sd

m za f m za f

m za f m za f

= =

   = =

1

1

xu x xy yu y xy

xu x xy yu y xy

m m k m m m k m

m m k m m m k m

−

−

 +  +

    − +  − +
i.e. 

2

2 ''

0

0

xy yu yxu x

xy yu yxu x

m m mm m

z z z z z

m m mm m

z z z z z

    
− − − =    

    

   
− + + =     

    

and by multiplication follows: Condition for «Regime 1»

(not from normal moment 

yield criterion):

' '

cd inf xu x yu y

cd sup xu x yu y

f zt m m m m

f zt m m m m

 − + −

 + + +
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Sandwich model



Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)

, , , ,

' '
x u y u u x u y um m m m m= = = =Isotrop bewehrt: 

2 1
2 2

s sd
u s sd cd

cd

a f
m a f d d f

f

   
= − =  −   

  

• Normal moment yield condition: xy um m=
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s sd cda f df= 

cdf

c d= 

1
2

d
 

− 
 

Isotropic reinforcement:

𝑚𝑥𝑦
2 − 𝑚𝑥,𝑢 −𝑚𝑥 𝑚𝑦,𝑢 −𝑚𝑦 = 0 with 𝑚𝑥, 𝑚𝑦 = 0

→ 𝑚𝑥𝑦 = 𝑚𝑥,𝑢𝑚𝑦,𝑢 = 𝑚𝑢 analogous for 𝑚′



Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)

• Lower limit value

xym

yxm

x

y

yxm

z

yxm

z

x

z

oben unten

' '
sx sd sy sd sx sd sy sd yxa f a f a f a f m z→ = = = =

d.h. alle Bewehrungen fliessen auf Zug!

1
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All reinforcements yield in tension:

Section at 45°

top bottom



Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

2

xyu

cd

m

d f



Corner supports with large twisting moments → Caution!

Assumption: cnom = 0 (d = h)

( )1 2 − 

1
2

 
 − 

 

0.125

0.117

0.094

25% =

75% =

0.22
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Normal moment 

yield condition

Twisting moment 

resistance



sinxym j

sinym j
x

k

z

t

cosxm j

cosyxm j

y

1

k

kum

Slabs - Yield conditions

Yield conditions for skew reinforcement

Superposition of the bending resistances of k reinforcement layers in the reinforcement directions k

(Transformation of all {mk = mku, mt = 0} in the directions x,y):

Normal moment yield condition for skew reinforcement:

('' since different compression zone heights → no compatible mechanism. But compression fields in the concrete are not 

orthogonal → fcd exceeded, thus no clear lower/upper limit value. For not too high reinforcement ratios however very good 

approximation)

Check condition                                        in all directions j (see next slide)

2 2

1 1

2 2

1 1

1 1

' '

' '

' '

cos cos

sin sin

sin cos sin cos

r r

x ku k x ku k

k k

r r

y ku k y ku k

k k

r r

xy ku k k xy ku k k

k k

m m

m m

m m

− −

− −

− −

 =   = 

 =   = 

 =    =  

 

 

 

( ) ( )

( ) ( )

2 2 2

1

' 2 2 2 '

1

' ' '

cos cos sin 2 sin cos

cos cos sin 2 sin cos

r

au ku k x y xy

k

r

au ku k x y xy

k

m m

m m

=

=

j  j −  =  j +  j +  j j

j  j −  =  j +  j +  j j





( ) ( ) ( )'
au a aum m mj  j  j
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2mau ag m m= −

2p
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1j uj

600

0

600−

0

Slabs - Yield conditions

Yield conditions for skew reinforcement

Check condition in all directions j:

[Seelhofer (2009)]

( ) ( ) ( )'
au a aum m mj  j  j
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Superposition of the bending resistances of k reinforcement

layers in the reinforcement directions k

(Transformation of all {mk = mku, mt = 0} in the directions x,y):

Bending resistance in the direction φ:

Check condition in all directions j

→ Normal moment yield criterion for skew reinforcement: 

( ) ( )( )
2

0xy xy x x y yY m m m=  − −  −  − =

( ) ( )( )
2

' ' ' ' 0xy xy x x y yY m m m=  + −  +  + =

≥ 0 ≥ 0

≥ 0 ≥ 0

05.12.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 36

2 2

1 1

2 2

1 1

1 1

' '

' '

' '

cos cos

sin sin

sin cos sin cos

r r

x ku k x ku k

k k

r r

y ku k y ku k

k k

r r

xy ku k k xy ku k k

k k

m m

m m

m m

− −

− −

− −

 =   = 

 =   = 

 =    =  

 

 

 

( ) ( )

( ) ( )

2 2 2

1

' 2 2 2 '

1

' ' '

cos cos sin 2 sin cos

cos cos sin 2 sin cos

r

au ku k x y xy

k

r

au ku k x y xy

k

m m

m m

=

=
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Slabs - Yield conditions

Example of skew reinforcement

x

y

60n = 

sna

sxa

120j = 
2 0m 

100 kNm/m

100 kNm/m

60

Rdx

Rdn

n

m

m

=

=

 = 

2 2

2 2

cos 0 cos 60 125 kNm/m

sin 0 sin 60 75 kNm/m

sin 0 cos0 sin 60 cos 60 3 25 43.3 kNm/m

x Rdx Rdn

y Rdx Rdn

xy Rdx Rdn

m m

m m

m m

 =   +   =

 =   +   =

 =    +    =  =

0

25

50

75

100

125

150

0 30 60 90 120 150 180

120 : 50 kNm/m

30 : 150 kNm/m

Rdmin

Rdmax

m

m

j =  =

j =  =

( ) 2 2cos sin 2 sin cosRd x y xym j =  j +  j +  j j

Maxima and minima of the bending resistances do not occur 

in the reinforcement directions.

Rather, a minimum occurs in the direction of the bisector of 

the obtuse angle. The resistance is significantly reduced even 

with slight skewness. 

1 0m 
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Using oblique coordinates, design equations can be formulated (as with membrane elements):

The normal moment yield criterion in oblique coordinates is: 

(with conditions)

Notation in parametric form

→ direct dimensioning possible: 

(Parameters k and k' freely selectable, minimum reinforcement results for k = k' = 1)

sin cos cot 2 cosx y xym m m m =  +   − 

( )( )2 sin sin 0xu nuY m m m m m  = −  −  − =

[Seelhofer (2009)]

( ) ( )11 1

sin sin
xu num m k m m m k m−

    +  +
 
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cotxy ym m m m = = − sinym m = 

' sin sinxu xum m m−    

sin tan cosuk =  j + 

( )( )2' ' 'sin sin 0xu nuY m m m m m  = −  +  + =

' sin sinnu num m m−    

( ) ( )( )
1' ' ' '1 1

sin sin
xu num m k m m m k m

−

    − +  − +
 

' 'sin tan cosuk =  j + 



5 Slabs

In-depth study and additions to Stahlbeton II

(Chapter 7.2)

5.3 Equilibrium solutions
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Structural analysis / Calculation methods - Overview

Slabs - Equilibrium solutions

Elastic slab theory Plastic slab theory

Solution of the slab

differential equation

Finite Element

Method

Approximate solutions 

with energy (virtual work) considerations

Static method of

the theory of plasticity

Kinematic method of

the theory of plasticity

Moment fields

Equivalent frame method

Strip method

Yield line method

simplified

advanced
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Solutions for the design and verification of the structural safety of 

reinforced concrete slabs based on the static and kinematic methods of 

the theory of plasticity have already been dealt with in Stahlbeton II. 

The corresponding knowledge is assumed and only shortly repeated here. 



Slabs - Equilibrium solutions

Overview

Equilibrium solutions are based on the lower or static limit theorem of the theory of plasticity.

Requirements: → statically admissible stress state (equilibrium and static boundary conditions satisfied)

→ yield conditions not violated anywhere

Determination of statically admissible stress states:

• Elastic slab theory: In addition to equilibrium and static boundary conditions, the elastic compatibility conditions are also satisfied here. 

The finite element method can be used to treat cases with any geometry and load (the most common method 

today). In addition, there are various textbooks with corresponding tables.

• Moment fields: Combination of different moment fields for selected geometries and loads

• Strip method: This method, which goes back to Hillerborg, assumes strip-shaped bending elements in two usually 

orthogonal directions (simple strip method). With the advanced strip method, concentrated forces can be treated

with the aid of corresponding moment fields or load distribution elements.

• Equivalent frame method: Global equilibrium solutions for flat and mushroom slabs (distribution of moments in transverse direction based on 

elastic solutions).
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Slabs - Equilibrium solutions

Overview

Equilibrium solutions are particularly suitable for the design of slabs. If a slab is dimensioned according to these methods and 

if its deformation capacity is sufficient, its load-carrying capacity will in no case be less than the corresponding load.

The static method of the theory of plasticity ensures sufficient bending resistance. However, the influence of shear forces is 

not taken into account and must be investigated separately.

If a compatible failure mechanism is found for an equilibrium solution (see chapter yield line method), it corresponds to a 

complete solution according to the theory of plasticity. This results in the (theoretically) exact ultimate load.
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Slabs - Equilibrium solutions

Simple strip method: Basics

2 2 22 2

2 2 2 2
2 0 , ,

xy y yx x
x y x y

m m mm m
q q q q q q

x x y y x y

   
+ + + = → = + = − = −

     

beam in

x-direction

beam in

y-direction

→ Neglect the twisting moments, satisfy equilibrium conditions only with mx and my

→ Divide the load q into the parts qx and qy (qxy = 0)

→ Total load q is thus carried by the beam load-bearing effect in x- and y-direction

→ Distribution of the load can be freely chosen. 

→ In order to ensure sufficient deformation capacity and satisfactory behaviour in serviceability limit state, qx and qy should be

chosen cautiously.

→ This also applies to the calculation of the individual (often hyperstatic) strips according to beam theory.

The idea of considering a slab as a group of beams orthogonal to each other was developed very early on. Marcus (1931) 

suggested that the distribution of the load should be such that the elastic deflections of the fictitious beams in the middle of the 

slab coincide (→ hint for selection of distributed load: per direction ~ L-4).

Hillerborg showed that the strip method is an application of the lower limit theorem of the theory of plasticity and generalised 

the method. 
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Slabs - Additions

Advanced strip method: Load distribution elements

Load distribution elements are used to treat supports and concentrated loads with the strip method. These convert a point 

load into a uniformly distributed load or vice versa. They thus correspond to the solutions for point-supported slabs (in the 

middle) under uniform loads. 

Supports: The load distribution elements are regarded as area bearings with uniform compression, which are loaded by 

indirectly supported strips or (usually) hidden beams. The bending resistances resulting from the beams are increased in 

order to account for the bending resistances required for load transfer in the column area (= load distribution element).

Individual loads: The individual loads are applied to the slab as uniformly distributed surface loads, which are transferred to 

the supports by strips or (usually) hidden beams. The resulting bending resistances of the strips are superimposed with the 

bending resistances required to convert the point load into an evenly distributed area load (= load distribution element).
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Slabs - Additions

Advanced strip method: Load distribution elements - Repetition moment fields

The moment fields below are suitable as "load distribution elements" for converting point loads into area loads.

If constant positive moments mx und my are superimposed on them, the lower bound value for the load-carrying capacity of an 

infinitely extended flat slab under uniformly distributed load is determined with mxu = myu = mu  and m’xu = m’yu = lmu (Marti 

1981):

( ) 2
4 1 ,

yuu xu

u u

mm m
q

l m m


 + l l = =

0xm =
2

2
1y u

y
m m

x

 
= − 

 
2

4
xy u

y xy
m m

x l

 
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 
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 
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 
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4
xy u

x xy
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y l

 
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 

( )2 2
yx for 

( )2 2
yx for 
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Slabs - Additions

Advanced strip method: Load distribution elements

(complete solution)

Suitable as load distribution elements: 

Square and rectangular slabs

( )'
2

u u

Q
m m+ 

p
'

8
u

Q
m 

1 1
0.034

2 8
um Q Q

 
 − =  

p 

,'
8

x
x u

y

lQ
m

l


,'
8

y

y u

x

lQ
m

l


2

, 0.034 0.034 x
x u x

y

l
m ql Q

l
  = 

2

, 0.034 0.034
y

y u y

x

l
m ql Q

l
  = 

(Solutions correspond to upper limit values, but column dimensions are finite and lower limit                               

value                              from moment fields is strongly on the safe side → for design ok) ( ) 24 1 uq m l + l
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Slabs - Additions

05.12.2024 47





q

Load transfer:

 Total load first carried in y-direction (hidden beam as 

area bearing a·bs) 

 Transfer of the reactions on a·bs by the hidden 

beam in x-direction to the surface bearings as·bs

Advanced strip method: Example rectangular slab, simply supported on one side, supported on 2 supports
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Slabs - Additions

q

Load transfer:

 Determination of the required bending resistances for the 

conversion of the area load qs on as·bs into the single load Qs

 Superposition of all necessary bending resistances









4
2

s s s s

s

qab b
Q q a b

b
b

= =
 − 
 
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Advanced strip method: Example rectangular slab, simply supported on one side, supported on 2 supports



5 Slabs
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In-depth study and additions to Stahlbeton II

(Chapter 7.3)

5.4 Failure mechanisms



Structural analysis / Calculation methods - Overview

Slabs – Failure mechanisms

Elastic slab theory Plastic slab theory

Solution of the slab

differential equation

Finite Element

Method

Approximative solutions 

with energy (virtual work) considerations

Static method of

the theory of plasticity

Kinematic method of

the theory of plasticity

Moment fields

Equivalent frame method

Strip method

Yield line method

simplified

advanced
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Slabs – Failure mechanisms

Yield line method

• The yield line method (Johansen, 1962) is an application of the kinematic method of the theory of plasticity.

• Procedure: Assume a kinematically admissible mechanism, then equate the external work done by the applied loads with 

the internal work (dissipation in rotating yield lines).

→ upper limit value for ultimate load.

• Usually different failure mechanisms have to be investigated, whereby for each mechanism the ultimate load has to be

minimised with regard to possible free parameters.

• Rigid parts of the mechanisms usually have a high degree of internal static indeterminacy in contrast to beam structures. A 

strict plasticity verification (check that the yield conditions are not violated inside the rigid parts) is therefore hardly possible, 

except in simple special cases.
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Slabs – Failure mechanisms

Yield line method

• In comparison to solutions based on the elastic slab theory or equilibrium solutions, the yield line method is quite easy to

apply, especially for the verification of existing structures → The kinematic method of the theory of plasticity has become 

much more widespread for slabs than for beams and membrane elements (very widespread especially in Scandinavia, also 

for design).

• The "equilibrium method" (Ingerslev, 1923) can be used to circumvent the analytical minimisation process, which is often 

complex, when using the yield line method. Here, equilibrium is formulated at the individual, rigid slab parts of a mechanism, 

whereby so-called "nodal forces" are to be considered. However, the method is only valid to a limited extent (partly

disproven recently), and the minimisation process can be carried out without any problems using numerical methods today. 

It is therefore not dealt with in this course.
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Slabs – Failure mechanisms

Yield line method – Dissipation (internal work) in a yield line

• Slab, orthogonally reinforced (x, y)

• Yield line in any direction t: 

Neglecting membrane forces

(nn = 0), it applies:

• Using the relationship:

• Results in the dissipation:

• With rotational velocities

around the y- or x-axis:

→ Dissipation:

= Sum of the products

in the two reinforcement

directions of:

n ndD m dt= 

2 2cos sinnu xu yum m m= j + j

( )2 2cos sinxu yu ndD m m dt= j + j 

cos , sinx n y n =  j  =  j

cos , siny xd dt d dt= j = j

xu x yu ydD m dy m dx=  + 

bending resistance
rotational velocities around 

the corresponding axis

length of the yield line

projected onto this axis
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Slabs – Failure mechanisms

Example, units [m, kNm/m]

3

2

Signatures for yield lines

(n = direction of the normal of the border)

positive yield line,

mn = mnu

negative yield line,

mn = -mnu’ = λmnu

λ = mu’/mu
7

q

68xum =

22yum =
' 0yum =

' 68xum =

23xum =

22yum = ' 34yum =

' 36xum =

x

y

1

1/3

1/3
1 1/4

Work of external forces              (pyramid                         + prism                          ) - q 

Dissipation work

3 7 2 7 41 1
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3

1

2
q q

 
=    +   = 

 
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3
. 5

3
1D

   
=  +  +   +  +  +   +   +   =   

   

W =

222.2 /uW D q kN m= → 

3 4
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1

1/3 + 1/4

x - dir. y - dir. 
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Example: Optimisation of yield line geometry

( ) ( ) ( )
( )

( )
( )

( ) ( ),1 0 ,1 0 ,2 0 ,2 0 ,2 ,2

1 1 1 1 1 1 1 1
1 1

1 1 1 1 1 1
xu xu xu xu yu yuD m b m b m b m b m a m a

a a a a a b

   
  = +  +  + + −  + −  + +   

 −   −   −  −  −  −    

1

1
/[

(1
-

)·
b
]

1/(·a)
1

1/[(1-)·a]

·a (1-)·a

mxu,1 = 68 kN

mxu,2 = 23 kN

myu,1 = myu,2 = 22 kN

m’yu,2 = 34 kN

(1-)·b

·b

( ) ( ),

1 1 2
1 0 and 0 2.823 m; b 1.062 21.7 kPa

3 2 6

u u
u opt

q q
W b a b a q a b q q a m

  + 
= −    +     =    → = = →   =  = =    

,  −

q
u

[k
N

/m
2
]

Conclusion: Despite the strong differences in geometry, the ultimate load deviates only slightly (flat minima)!

x

y

Optimization of  (for  = opt )

Optimization of  (for  = opt )

m’xu,1 = 68 kN

m’xu,2 = 36 kN

(1-0)·b = 3 m

0·b = 2 m



Slabs – Failure mechanisms

Yield line method - Fan mechanisms

• Slab, isotropically reinforced (mxu = myu = mu)

• Principal radius of curvature in cone element  

from 

→ Principal curvature

→ Rotation

• Dissipation per area element in the fan:

1/ R

Rr =

1

1/ R

r

R

Rr =
1r

R
=



1 1

1 ( )Rr− − =  =

1rdj =  j

1
u udD m dr m rd drj=  = j


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um
1

r

R

dr
um

r dr d  j

dj



Slabs – Failure mechanisms

Yield line method - Fan mechanisms

• Dissipation per area element in the fan:

Dissipation inside a fan with opening angle :

with

• where mu and R can be general functions of angle j

• Dissipation along the fan boundary (independent of R):

um
1

r

R

dr
um

r dr d  j

dj

1
u udD m dr m rd drj=  = j



( )

0 0

1
( , )

( )

R

uD m r dr d
R

j  
= j j 

j  
  Rr =

0 0

1
' ' ( , )u uD m Rd m r d

R

 

= j = j j 
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( ' ) (1 )u u uD m m m=  + =  + l

→ Dissipation in a fan with opening angle 

for constant mu and m’u = lmu :



Slabs – Failure mechanisms

(*) A valid solution for a slab isotropically reinforced with bending resistances mu, m’u under

loads q and Q in the coordinates (x,y), can be applied to an orthotropically reinforced slab with 

myu = ·mxu = ·mu, m’yu = ·m’xu = ·m’u . The coordinates are to be transformed with x*= x, y*= 𝑦 𝜇, the loads with q*= q and 

Q*= 𝑄 𝜇
(The practical use is limited. For example, an isotropically reinforced square slab corresponds to an orthotropically reinforced 

slab with stronger reinforcement in the longer direction, which is unpractical).

1W Q= 

2 (1 )uD m= p + l

Concentrated load on slab of any geometry

um−l

um

Q 1( ) ( )2 ' 2 1u u u uQ m m m p + = p + l

Same ultimate load as with moment field for a centrically supported circular slab 

under uniform load (independent of R) → complete solution for a circular slab. 

Upper limit value for other cases.

By applying the transformation theorem (*), the upper limit value is obtained for an 

orthotropically reinforced slab of any geometry:

( ) ( )2 ' ' 2 1u xu yu xu yu xu yuQ m m m m m m p + = p + l
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Appendix 1



Slabs - Yield conditions

Yield conditions for skew reinforcement

Representation of the yield condition:

(two elliptical cones; compare with orthogonal reinforcement where the peaks lie in the plane mxy = 0 and the intersecting 

ellipse in a plane parallel to the mxy-axis).

[Seelhofer (2009)]
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Slabs - Yield conditions

Skew reinforcement

Using the parametric form, the design (and the graphical representation) is possible analogous to orthogonal reinforcement.

[Seelhofer (2009)]

If no upper or lower reinforcement is required in one of the two reinforcement directions, refer to Seelhofer (2009).

1

,x 

m

m


y

1

,n 

m
m

yum
1k =

xym

ym

xm xym

xum
sinm 

0

sinm 

sinm 

( )1 2cot k−

sinm 

xum

0
k =num

1



sinm− 
0

sinm− 

sinm 

( )
2

1 'cot k−  
  

sinm 

'
xum

'

0
k =

'
num

1



( ) ( )

( ) ( )( )

1

1' ' ' ' ' '

1 1
sin tan cos

sin sin

1 1
sin tan cos

sin sin

xu nu u

xu nu u

m m k m m m k m k

m m k m m m k m k

−

   

−

   

 +  + =  j + 
 

 − +  − + =  j + 
 
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