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Within this chapter, the students are able to: 

• design and assess slabs with orthogonal and skew reinforcement based on elastic and plastic slab theory 

and thereby

• elaborate on the applicability, accuracy, and limitations of the used approaches. 

• explain the underlying differences of the methods, especially with respect to the treatment of twisting 

moments. 

• illustrate in terms of Mohr’s circles the superposition of the bending resistance of two layers of orthogonal or 

skew reinforcement and explain how it results in the bending moment yield conditions. 

• identify the necessity and how to design edge reinforcement in slab corners and edges. 
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This chapter examines the load carrying capacity of thin slabs with small deflections. An ideally plastic

material behaviour is assumed, without going into detail with respect to deformation demands and

deformation capacity. As slabs are generally weakly reinforced, there is usually little cause for concern in

this respect.

Slabs are the most widespread use of reinforced concrete. In keeping with their importance, they were

already dealt with in detail in Stahlbeton II, and further information is given in this chapter. First, the basic

static relationships are established, from which the yield conditions can be derived.

In practice, numerical methods, in particular the finite element method, are mostly used today to determine

the stresses. For plausibility checks, appropriate approximate methods such as the equivalent frame

method are suitable.

In plastic slab theory, static, and kinematic calculation methods are used to determine the load carrying

capacity.

For design, usually only the state of bending of the slab is considered. The influence the shear forces is

usually only critical for concentrated forces and supports (punching).

Structural analysis / Calculation methods - Overview

Slabs - Basics

Elastic slab theory Plastic slab theory

Solution of the slab

differential equation

Finite Element

Method

Approximate solutions 

with energy (virtual work) methods

Static method of

the theory of plasticity

Kinematic method of

the theory of plasticity

Moment fields

Equivalent frame method

Strip method

Yield line method

simplified

advanced
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The stresses acting in the sectional surfaces of a slab element can be combined to stress resultants

according to the figure.

There are bending and twisting moments, as well as shear forces, corresponding to the bending stress

state. Furthermore, there are membrane forces, corresponding to the membrane stress state. In the

following, we consider slabs stressed primarily perpendicular to their mid-plane, so that a bending stress

state prevails in the slabs. Membrane forces are therefore ignored for the time being.

NB: Analogously to beam theory, sz = s3 is neglected. Thus, in each plane z = const. and there is a plane

stress state.
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For stresses and stress resultants, the sign conventions illustrated in the figure are used. Positive stresses

act on elements with a positive outer normal direction in the positive coordinate direction. For normal

stresses this means that tensile stresses are positive. Positive membrane and shear forces correspond to

positive stresses. Positive moments correspond to positive stresses for positive values of the coordinate z.

In case of double indices, the first index represents the direction in which the stress acts. The second

index designates the normal direction of the surface element on which the stress acts. If both indices are

identical, one is omitted.

Plane elements - Stress resultants

Slabs - Basics
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Sign convention

• Positive stresses act on elements with positive outer normal direction in 

positive axis direction

• Positive membrane and shear forces correspond to positive associated 

stresses

• Positive moments correspond to positive associated stresses for z > 0

• Indices: 1st index: direction of stress 

2nd index: normal direction of the element at which stress is applied
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The equilibrium of the forces and moments acting on the slab element leads to three equations. By

inserting the second and the third equation into the first, the equilibrium condition for slabs in cartesian

coordinates is obtained.

Slabs - Equilibrium
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Equilibrium condition for slabs: 

Derivation via equilibrium at the differential slab element:

terms with (dx)2 or (dy)2 neglected

Equilibrium conditions - Cartesian coordinates
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The moment equilibrium at the slab elements shown in the figure leads to relationships which serve as

transformation formulas for bending and twisting moments. Any section with the normal n, whose direction

is defined by the angle j, can be considered. The moments can be represented with the help of a Mohr's

circle. Twisting moments are calculated positively here if the corresponding positive (right-turning)

moment arrow points in the direction of the observed edge (other than the standard sign convention, just

as for shear stresses in Mohr’s circle of stresses).

The principal direction for which the twisting moments disappear can be determined graphically using

Mohr's circle as well as analytically (as well as the corresponding principal moments m1 und m2).

Slabs - Equilibrium
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Bending and twisting moments in any direction j: Principal direction j1 (twisting moments = 0) and principal

moments (Mohr's circle):
2 2cos sin sin 2n x y xym m m m= j + j + j
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Stress transformation: Bending and twisting moments

Slabs - Equilibrium
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Analogously to the moments, the equilibrium of the vertical forces on the slab element can be established.

This leads to transformation rules for shear forces at any section with the normal n at the angle j. The

trigonometric functions can be interpreted using Thales’ circle. A principal shear force v0 is transmitted in

the direction j0 at each point of the slab. No shear force is transmitted perpendicular to this direction. The

principal directions of the shear forces and moments coincide only in special cases, in general j0 ≠ j1.

Principal shear force and associated direction j0

(interpretation with Thales’ circle):

(generally j0  j1)

Slabs - Equilibrium

Shear forces in any direction j:

Stress transformation: Shear forces
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support force corner forceshear force in boundary zone

Static method of the theory of plasticity - Explanation of load-bearing effect in the region of slab edges, which is based only on 

equilibrium considerations:

→ From equilibrium in a narrow edge zone of the slab, one gets the edge transverse force: Vt = -mtn

→ If: The slab edge is stress-free and the stresses st occurring in the edge zone do not change in the t direction (Clyde, 1979).

→ From the boundary shear force Vt = -mtn , one gets the corner forces 2 mtn and the contribution of mtn,t to the support force.

Slabs - Boundary conditions

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 10

Boundary conditions based on equilibrium

The forces that generally act at the edge of a slab are a bending moment mn, a twisting moment mtn., and

a shear force vn. According to Kirchhoff, for thin elastic slabs with small deflections, an inhomogeneous

bipotential equation is obtained for the deflections of the slab. Its solution can only be adapted to two

boundary conditions. For this reason, a further condition is introduced for the treatment of simply

supported and free slab edges. The twisting moments mtn are replaced by a continuous distribution of

vertical pairs of forces, whereby at the boundaries between the infinitesimal elements of length dt the

forces cancel each other out except for the increase mtn,t·dt. The increase per unit length mtn,t is now

combined with the shear force vn to form a support force vn+mtn,t = mn,n+2mnt,t. The described treatment of

twisting moments at the slab edge goes back to Thomson and Tait (1883) and can be justified with the

Saint-Venant principle.

However, from the perspective of the static method of the theory of plasticity, an explanation of the load-

bearing effect based only on equilibrium considerations is preferable. This is illustrated in the figure. By

equilibrium, an edge force Vt=-mtn must exist in a narrow edge zone of the slab, provided that the slab

edge is stress-free and the stresses occurring in the edge zone do not change in the t direction. From the

existence of the boundary shear forces Vt, corner forces 2 mtn and the contribution mtn,t of the twisting

moments to the support force are obtained, again by equilibrium.
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→ Boundary conditions based on equilibrium considerations:

support force

Slabs - Boundary conditions

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 11

Boundary conditions on the basis of equilibrium considerations

• Clamped edge: mn, mtn and vn arbitrary

• Simply supported edge: mn = 0, resulting support force:

• Free edge: mn = 0, disappearing support force:
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m m m
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+ = +
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2 0tn n nt
n

m m m
v
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The corresponding boundary conditions can be summarised as shown in the figure. These result from

pure equilibrium considerations and are, therefore, valid for any material behaviour. For thin elastic slabs,

stricter boundary conditions can be formulated. However, these are not relevant for the treatment

according to the theory of plasticity.

→ Boundary conditions based on equilibrium considerations:

support force

Slabs - Boundary conditions
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The edge shear forces are to be taken into account when dimensioning the reinforcement along simply

supported and free edges of reinforced concrete slabs. The figure shows the force flow of a rectangular

slab subjected to pure twisting, which can be represented with a truss model.

On the top and bottom of the slab, concrete struts are formed which are perpendicular to each other and

inclined at 45° to the slab edges. The components of these struts in the direction normal to the slab edge

are carried by the longitudinal reinforcement. The components in the direction of the slab edges are

transmitted to the edge strips via inclined concrete compression struts. Their vertical component, which

corresponds to the edge shear force, must be supported by vertical reinforcement. This can be realised

with shear reinforcement or by detailing the bending reinforcement accordingly. It can also be seen that

the two edge shear forces meeting in the corner of the element are not in equilibrium, but add up to a

corner force of 2 mnt.

lateral force in boundary zone
force flow in slab corner

Slabs - Boundary conditions

Edge reinforcement

If twisting moments are calculated along simply supported and free edges, a reinforcement must be arranged to carry Vt = -mtn. 

Figure (corner, pure twisting):

→ Upper and lower side: concrete struts perpendicular to each other, inclined at 45° to the edges of the slabs, support of 

components normal to the edge by the longitudinal reinforcement. 

→ Components in the direction of the slab edges are transferred to the edge members by inclined concrete compression 

struts. Vertical components correspond to the edge shear forces Vt = -mtn

→ Carrying Vt = -mtn with shear reinforcement or correspondingly detailed bending reinforcement (e.g. «hairpins»).

2 mnt
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The equivalence of twisting moments at the slab edge and edge shear forces (according to the edge

transverse force Vt = -mtn) was concluded on the previous slide. If one combines (in mind) two slabs at

their free edges, a discontinuity line is created (note that slab edges represent discontinuities at which

generally a bending moment mn, a twisting moment mtn and a shear force vn acts). It can be concluded

that at static discontinuity lines in the interior of the slab the bending moments mn must be continuous, the

twisting moments mnt and the shear forces vn, on the other hand, may jump. At a static discontinuity line

along which an «edge» shear force Vt is transferred, the relationships according to the figure must be

satisfied.

discontinuity line

Slabs - Boundary conditions

Discontinuities

Static discontinuity lines are admissible inside the slab (↔ Equivalence of twisting moments at the slab edge and edge shear 

forces, joining two free slab edges).

At discontinuity lines

→ Bending moments mn must be continuous (mn
+ = mn

-)

→ Twisting moments mnt and shear forces vn may be discontinuous (jump) (mnt
+ ≠ mnt

-, vn
+ ≠ vn

-)

Thus, for a static discontinuity line along which an edge shear force Vt is applied, the following conditions apply: 

n nm m− +=

t nt ntV m m+ −= −

t
n n

V
v v

t

− +
= −


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Slabs - Yield conditions

Yield conditions of Tresca and von Mises for isotropic slabs (steel etc.)

(not suitable for reinforced concrete, even with "isotropic reinforcement"!)

In the fully plasticised state (or rigid-plastic behaviour), the stress state 

on each side of the median plane is constant → yield condition 

analogous to the plane stress state:

Yield regimes according to Tresca: 

(2 elliptical cones, elliptical cylinder)
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Yield conditions for isotropic materials cannot be used for reinforced concrete slabs (not even for "isotropic

reinforcement", i.e. bending resistances of equal magnitude in orthogonal directions).

Slabs - Yield conditions

Yield conditions of Tresca and von Mises for isotropic slabs (steel etc.)

(not suitable for reinforced concrete, even with "isotropic reinforcement"!)

In the fully plasticised state (or rigid-plastic behaviour), the stress state 

on each side of the median plane is constant → yield condition 

analogous to the plane stress state:

Yield regimes according to Tresca: 

(2 elliptical cones, elliptical cylinder)
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Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

Bending resistances mx,u and my,u of an orthogonally reinforced slab (reinforcement in x- and y-direction):

By superposition of the bending resistances in the reinforcement directions and transformation in any direction (analogous to

the stress transformations) the bending and twisting moments mn , mt and mnt in n- and t-direction (statically admissible stress 

state) are obtained:

Cross-Section x-direction Cross-Section y-direction

x sda f

'x sa s

cdf

,x um
x

xc

y sda f

'y sa s

cdf

,y um
y

yc
Without normal forces, the compression 

zone heights cx and cy and thus mx,u and 

my,u result from equilibrium.

Since reinforcement is orthogonal: , 0xy um =

2 2cos sinn xu yum m m=  j +  j

( ) sin cosnt yu xum m m= −  j j

2 2sin cost xu yum m m=  j +  j

All membrane forces disappear:

0t n ntn n n= = =
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The bending resistances of an orthogonally reinforced slab can be determined independently in x- and y-

direction. The compression zone heights cx and cy and thus mxu und myu are determined by equilibrium at

the cross-section. Since the reinforcement is arranged orthogonally, the twisting moment mxy in the

corresponding directions is equal to zero.

By superimposing the plastic moments mxu and myu in the reinforcement directions with nxy = nx = ny = 0, a

statically admissible stress state is obtained in the element. The bending and twisting moments

corresponding to this stress state can be determined in any direction n analogous to the stress

transformation.
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Slabs - Yield conditions
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Yield conditions for reinforced concrete slabs

The resistance is checked on the basis of the normal moments ("normal moment yield condition"). 

If the compression zone depths are equal, i.e. cx = cy the complete solution results: 

• Statically admissible stress state (equilibrium)

• Kinematically compatible failure mechanism (yield line, see later)

For cx ≠ cy the statically admissible stress state provides a lower limit for the ultimate load: 

2 2

, , ,cos sinn u x u y um m m j + = j

2 2

, , ,sin cost u x u y um m m j + = j

2 2

, , ,' ' cos ' sinn u x u y um m m j= +  j

2 2

, , ,' ' sin ' cost u x u y um m m j= +  j

2 2

, , ,cos sinn u x u y um m m j +  j

2 2

, , ,sin cost u x u y um m m j +  j

2 2

, , ,' ' cos ' sinn u x u y um m m j +  j

2 2

, , ,' ' sin ' cost u x u y um m m j +  j

Bending resistance for positive bending 

moments

Bending resistance for negative bending moments («‘» )

(the sign of the bending resistance is defined positive)

The differences with regard to the compression zone depths in x- and y-direction are usually small so that the inequality sign 

may be suppressed with good approximation.

NB: With a definition range for the angle j of {0 ≤ j ≤ p}, the relationship for mn is sufficient.

The load bearing capacity is checked using the normal moment yield condition, which assumes that failure

can only occur through the formation of a yield line. If the compression zone depths in x- and y-direction is

the same, i.e. cx = cy, a kinematically compatible failure mechanism (yield line, see later) can be found for

the statically admissible stress state. This is therefore the complete solution.

In general, the compression zone depths in the two reinforcement directions are different, cx ≠ cy, and no

compatible failure mechanism can be assigned to the considered stress state. The determined value for

mn is thus a lower limit value for the bending resistance mnu in the direction n. The deviations for cx ≠ cy

are usually very small, and the inequality sign can therefore be suppressed.

The derivation of the formula for negative bending moments is analogous to that for positive moments,

whereby the negative bending moments are also defined positively here, m'n > 0.

Additional remark

− "Normal moments" are bending moments (to distinguish them from twisting moments). The normal

moment yield condition verifies that the normal moment (bending moment) in each direction is smaller

than the bending resistance.

Slabs - Yield conditions

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 17

Yield conditions for reinforced concrete slabs

The resistance is checked on the basis of the normal moments ("normal moment yield condition"). 
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2 2
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may be suppressed with good approximation.

NB: With a definition range for the angle j of {0 ≤ j ≤ p}, the relationship for mn is sufficient.



Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

The action mn in the relevant direction ju is set equal to the resistance mn,u obtaining:

Considering that the condition mn,u ≥ mn must be satisfied for all directions j, the result is (*):

(*) In the relevant direction ju (point of contact of mn,u (j) and mn (j)) the difference mn,u − mn is minimum, thus:

after some transformation the specified relations follow by resubstitution.

!
2 2 2 2

, ,,cos sin cos sin 2 sin cosx u u y u u x u y u un xy un umm m m m mm j +  j = =  j +  j +  j j=

for positive 

bending 

moments:

, tanx u x xy um m m= +  j

, coty u y xy um m m= +  j

( )
( )

,

,

tan
x u x

u

y u y

m m

m m

−
j =

−

,' cot 'y u y xy um m m= − −  j

,' tan 'x u x xy um m m= − −  j

( )
( )

,

,

'
tan '

'

x u x

u

y u y

m m

m m

+
j =

+

for negative 

bending 

moments:

resistance actions resistance actions

( ) ( ) ( ) ( )( ) ( ), , , , ,min! 0, ( ) ( ) cot tann u n n u n n u n y u x u y x xy u um m m m m m m m m m m
  

j − j = → j − j = j = j → − = − + j − j
j j j
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Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

The action mn in the relevant direction ju is set equal to the resistance mn,u obtaining:
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Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

Bending moments mn as a function of j → Controlling direction ju

j1, j2 → Directions in which the acting positive or negative moment becomes maximum (principal directions for mn)

ju, j’u → Directions in which the action curve touches the resistance curve, i.e. mn = mn,u

Generally j1 ≠ ju resp. j2 ≠ j’u → Dimensioning of mn,u based on principal moment m1 is not conservative!
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Direction of positive 

yield line

Direction of negative 

yield line

For a stress state given by the moments mx, my and mxy the moment mn = mx·cos2(j) + my·sin2(j) +

2·mxy·sin(j)·cos(j) varies depending on the direction j. The resistance varies according to the yield

condition mnu = mxu·cos2(j) +myusin2(j) also with j. Thus, a yield line forms at the point of contact of the

two curves of action and resistance. The corresponding angle ju determines the direction of the yield line.

It should be noted that in general the direction of the maximum moment (principal direction of moments j1)

does not coincide with the direction of the yield line. A dimensioning of the structure to the principal

moment is therefore not on the safe side.

Additional remark

− Since the angle j is measured from the x-direction (= reinforcement direction), the maxima and minima

of mn,u and m'n,u respectively are j = 0 and j = p/2 (x- and y-direction).

− Maximum and minimum moment mn occur in different directions j1 and j2 (except for mxy = 0) .

− In general, the yield condition is only achieved for positive or negative moments (figure shows special

case of optimal design).

nm

,'n um

,n um

Slabs - Yield conditions

Yield conditions for reinforced concrete slabs

Bending moments mn as a function of j → Controlling direction ju

j1, j2 → Directions in which the acting positive or negative moment becomes maximum (principal directions for mn)
ju, j’u → Directions in which the action curve touches the resistance curve, i.e. mn = mn,u

Generally j1 ≠ ju resp. j2 ≠ j’u → Dimensioning of mn,u based on principal moment m1 is not conservative!
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Direction of positive 

yield line

Direction of negative 

yield line



0Y =

' 0Y =

Slabs - Yield conditions

Normal moment yield criterion

If ju and j’u are eliminated from the previous equations, the normal moment yield criterion results:

( )( )2

, , 0xy x u x y u yY m m m m m= − − − =

( )( )2

, ,' ' ' 0xy x u x y u yY m m m m m= − + + =

≥ 0 ≥ 0

≥ 0 ≥ 0

If               and               , the yield condition is fulfilled.    0Y  ' 0Y 

The normal moment yield condition forms two elliptical cones in 

(mx, my, mxy) space. On the conical surfaces x y = 0 (from 

yield law), i.e. one of the two principal curvatures disappears. 

The compatible mechanisms therefore correspond to 

developable surfaces.

, ,'n u n n um m m−  
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The yield condition for positive moments mnu ≥ mn can also be expressed as a moment tensor:

The equation is satisfied when the determinant of the tensor becomes zero. From this, the yield conditions in

the form Y = 0 can be derived directly. The derivation is the same for negative moments.

According to the theory of plastic potential, the following curvature increments are assigned to the yield surfaces

Y = 0 via the associated flow rule (l ≥ 0):

It follows . The transformation in the principal directions ultimately leads to

This means one of the principal curvatures disappears. Thus, compatible failure mechanisms correspond to

kinematically admissible deformation states in the form of developable surfaces.

( ) ( )
( )

( ),

cos
cos φ sin 0

sin

xu x xy

n u n

xy yu y

m m m
m m

m m m

− j  
− = j   =      − j   

( )x yu y

x

Y
m m

m


 = l  = l  −


( )y xu x

y

Y
m m

m


 = l  = l  −


2 2xy xy

xy

Y
m

m


 = l  = l 



2

x y xy  = 
1 2 0  =

0Y =

' 0Y =

Slabs - Yield conditions

Normal moment yield criterion

If ju and j’u are eliminated from the previous equations, the normal moment yield criterion results:
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Slabs - Yield conditions

Normal moment yield criterion

If ju and j’u are eliminated from the previous equations, the normal moment yield criterion results:

( )( )2

, , 0xy x u x y u yY m m m m m= − − − =

( )( )2

, ,' ' ' 0xy x u x y u yY m m m m m= − + + =

≥ 0 ≥ 0

≥ 0 ≥ 0

Dito, with notations according to SIA 262:

, ,'n u n n um m m−  

( )( )2

, , , , , 0xy d x Rd x d y Rd y dY m m m m m= − − − =

( )( )2

, , , , ,' ' ' 0xy d x Rd x d y Rd y dY m m m m m= − + + =

≥ 0 ≥ 0

≥ 0 ≥ 0
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The expressions of the yield conditions are analogous to the notation according to SIA 262. According to

SIA 262 the acting moments mx,d, my,d and mxy,d ("design") as well as the bending resistances mx,Rd and

my,Rd ("Resistance") are calculated at the design level.

NB. In the structural Eurocodes, the indices of the design moments are «Ed» instead of just «d».

Slabs - Yield conditions

Normal moment yield criterion

If ju and j’u are eliminated from the previous equations, the normal moment yield criterion results:
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Slabs - Yield conditions

The parameter k can be freely selected and the reinforcement can be 

designed directly. If k = 1, the linearised yield condition follows, which is also 

used by many FE programs.

,x u x xym m k m + 

,

1
y u y xym m m

k
 + 

,

1
'

'
y u y xym m m

k
 − + 

,' 'x u x xym m k m − + for positive 

bending 

moments:

for negative 

bending 

moments:
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Design moments

The normal moment yield criterion in parametric form: with                  and with             

The resulting design moments:

tan uk = j ' tan 'uk = j

The normal moment yield criterion can be written in parametric form, with the substitutions of k = |tanju|

and k’ = |tanj’u|. The parameters k and k’ can be freely selected and often k = k' = 1 is set. The linearised

yield condition according to the figure follows. It is also used in many FE programs.

The normal moment yield condition overestimates the resistance for large twisting moments with respect

to the reinforcement directions as well as for high reinforcement ratios. In many cases, this overestimation

is compensated by the favourable effect of the membrane forces, which are usually neglected in the

design. However, caution is required with corner supports in the immediate vicinity of which there is an

approximate state of pure twisting. This statement already made in Stahlbeton II, i.e. that the normal

moment yield condition overestimates the twisting resistance of slabs, is derived on slides 26ff.
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Slabs - Yield conditions
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Design moments

The normal moment yield criterion in parametric form: with                  and with             

The resulting design moments:

tan uk = j ' tan 'uk = j



Slabs - Yield conditions

Design moments

The normal moment yield condition in parametric form: with                  and with             

The resulting design moments:

,x u x xym m k m + 

,

1
y u y xym m m

k
 + 

,' 'x u x xym m k m − + for positive 

bending 

moments:

for negative 

bending 

moments:

NB: For several loads or load combinations the required bending resistance (mx, my)Rd should be determined for concomitant

internal forces (mx, my, mxy)d, i.e., stress resultants obtained for the same load combination. The determination of the required

bending resistances (mx, my)Rd implemented in many FE programs from separately determined "limit values" for non-

associated mx,d, my,d and mxy,d is often strongly on the safe side.

, , ,x Rd x d xy dm m k m + 

, , ,

1
y Rd y d xy dm m m

k
 +  , , ,

1
'

'
y Rd y d xy dm m m

k
 − + 

, , ,' 'x Rd x d xy dm m k m − + 

Dito, with notations according to SIA 262:
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,

1
'

'
y u y xym m m

k
 − + 

tan uk = j ' tan 'uk = j

The notations according to SIA 262 are analogous to the yield condition.

If several load combinations are used, the required bending resistance (mx, my)Rd should be determined

for concomitant internal forces (mx, my, mxy)d. In many FE programs, however, the determination of the

bending resistances (mx, my)Rd from separately determined "limit values" for each individual moment

action mxd, myd and mxyd is implemented. This procedure is often strongly on the safe side.

Slabs - Yield conditions

Design moments

The normal moment yield condition in parametric form: with                  and with             

The resulting design moments:
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bending resistances (mx, my)Rd implemented in many FE programs from separately determined "limit values" for non-

associated mx,d, my,d and mxy,d is often strongly on the safe side.

, , ,x Rd x d xy dm m k m + 

, , ,

1
y Rd y d xy dm m m

k
 +  , , ,

1
'

'
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1
'

'
y u y xym m m

k
 − + 

tan uk = j ' tan 'uk = j



Slabs - Yield conditions

In-class exercise

Given: Square slab supported at 3 corners with side length l, acting corner force Q = 100 kN

Desired: Design moments for reinforcement in coordinate direction.

100 kNQ =

a) x

y
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corner force

Hint: from the boundary shear force Vt = -mtn , 

one gets the corner forces 2 mtn

The example shows a square slab with the side length l, which is point supported in three corners. A

single load Q is acting in the fourth corner. For reasons of symmetry, the support reactions are ±Q.
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Given: Square slab supported at 3 corners with side length l, acting corner force Q = 100 kN

Desired: Design moments for reinforcement in coordinate direction.

100 kNQ =

a) x

y

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 24

corner force

Hint: from the boundary shear force Vt = -mtn , 

one gets the corner forces 2 mtn



Slabs - Yield conditions

Design moments - Example

Given: Square slab supported at 3 corners with side length l, acting corner force Q = 100 kN

Desired: Design moments for reinforcement in coordinate direction and at 45° to it

100 kNQ =

a) x

y

Linearised yield conditions (k = 1):

, 0 50 50 kNx u x xym m k m +  = + = ,

1
0 50 50 kNy u y xym m m

k
 +  = + =

,' ' 0 50 50 kNx u x xym m k m − +  = + = ,

1
' 0 50 50

'
 kNy u y xym m m

k
 − +  = + =

→ All four reinforcement layers (top and bottom in x- and y-direction) have to be dimensioned for 50 kNum 

Action: Corner force

(→ pure twisting with respect to the reinforcement directions (x,y))

2 100xym Q= =  kN

0x ym m= =

50xym =  kN
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The example shows a square slab with the side length l, which is point supported in three corners. A

single load Q is acting in the fourth corner. For reasons of symmetry, the support reactions are ±Q.

The individual forces acting on the corners are transmitted purely via twisting moments (see slide 11). The

bending moments in the direction of the orthogonal reinforcement are thus equal to zero. Using the

linearised yield conditions with k = 1, the required cross-sectional resistances can be determined. Here

they are the same for positive and negative moments in both directions of the reinforcement.

Slabs - Yield conditions

Design moments - Example

Given: Square slab supported at 3 corners with side length l, acting corner force Q = 100 kN

Desired: Design moments for reinforcement in coordinate direction and at 45° to it

100 kNQ =

a) x

y
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, 0 50 50 kNx u x xym m k m +  = + = ,

1
0 50 50 kNy u y xym m m

k
 +  = + =

,' ' 0 50 50 kNx u x xym m k m − +  = + = ,

1
' 0 50 50

'
 kNy u y xym m m

k
 − +  = + =

→ All four reinforcement layers (top and bottom in x- and y-direction) have to be dimensioned for 50 kNum 

Action: Corner force

(→ pure twisting with respect to the reinforcement directions (x,y))

2 100xym Q= =  kN

0x ym m= =

50xym =  kN
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100 kNQ =

x

y

t

n

Slabs - Yield conditions

Design moments - Example

b) Rotation of the reinforcement by 45° to the n-t-direction

, 50 0 50 kNn u n ntm m k m +  = + = ,

1
50 0 50 kN 0t u t ntm m m

k
 +  = − + = − →

,' ' 50 0 50 kN 0n u n ntm m k m − +  = − + = − → ,

1
' 50 0 50

'
 kNt u t ntm m m

k
 − +  = + =

→ Half the amount of reinforcement is sufficient for the reinforcement in the principal moment direction: lower reinforcement in the n-direction 

and upper reinforcement in the t-direction require each:                          (negative design moments: no reinforcement required).

→ "Trajectory reinforcement" optimal, but rarely practicable (complicated reinforcement layout, principal directions change due to changing 

actions)

50 kNum 

2 2cos sin sin 2 50n x y xy xym m m m m= j + j + j = =  kN

Actions:

(Reinforcement arranged in principal moment directions!)

2 2sin cos sin 2 50t x y xy xym m m m m= j + j − j = − = −  kN

( )sin cos cos 2 0nt y x xym m m m= − j j + j =

45j = 

Linearised yield conditions:
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If the orthogonal reinforcement is rotated by 45° to the original coordinate direction, the bending and

twisting moments must first be transformed in the direction of the reinforcement for the application of the

yield conditions (see slide 7). A rotation of 45° means that the state of pure twisting results in a state of

pure (anticlastic) bending (see slide 25).

By inserting it into the yield condition, it can be seen that only half of the previously required reinforcement

is needed. Statically, only a lower reinforcement in n-direction and an upper reinforcement in t-direction

are necessary.

Although such "trajectory reinforcement" is the most effective in terms of material use, it is less practicable

for the actual application (higher effort of the reinforcement layers, different load cases due to variable

actions change the respective principal directions).

Additional remark:

− In the yield conditions, x and y by convention denote the reinforcement directions. Here we deviate

from this (n and t as reinforcement directions)!

100 kNQ =

x

y

t

n

Slabs - Yield conditions

Design moments - Example

b) Rotation of the reinforcement by 45° to the n-t-direction

, 50 0 50 kNn u n ntm m k m +  = + = ,

1
50 0 50 kN 0t u t ntm m m

k
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1
' 50 0 50

'
 kNt u t ntm m m

k
 − +  = + =

→ Half the amount of reinforcement is sufficient for the reinforcement in the principal moment direction: lower reinforcement in the n-direction 

and upper reinforcement in the t-direction require each:                          (negative design moments: no reinforcement required).

→ "Trajectory reinforcement" optimal, but rarely practicable (complicated reinforcement layout, principal directions change due to changing 
actions)

50 kNum 

2 2cos sin sin 2 50n x y xy xym m m m m= j + j + j = =  kN

Actions:

(Reinforcement arranged in principal moment directions!)

2 2sin cos sin 2 50t x y xy xym m m m m= j + j − j = − = −  kN

( )sin cos cos 2 0nt y x xym m m m= − j j + j =

45j = 
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Slabs - Yield conditions

Pure twisting

X

Y

2 1

,xy xym

,

,

x y

x ym m

 

( )0xy x y  =  =

2

−
1

+
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x

y

n

t

The square slab with alternating positive and negative corner forces carries by pure twisting in the

coordinate axes (constant twisting moment). The distortion state can be represented with a Mohr's circle

with a centre in the coordinate origin. A 45° rotation of the reference axes leads to the principal directions

in which there is pure bending.

The left figure shows the deformations (exaggerated) due to the given load (red point loads). Due to the

lack of bending actions, the respective slab strips run straight along the coordinate axes. The deflected

shape thus results from the horizontal staggering of straight trajectories. The change of the inclination

along the coordinate axes is generated by the twisting moment (twisting = torsion). The blue and green

curves show that the slab is curved in the diagonal directions and that there is a pure bending state in

these principal directions (anticlastic bending = negative Gauss curvature, i.e. centres of curvature on

opposite sides of the middle plane).

Slabs - Yield conditions

Pure twisting

X

Y

2 1

,xy xym

,

,

x y

x ym m

 

( )0xy x y  =  =

2

−
1

+
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xv xm

xym
yxn

xn

xyn
yn

yv

xym

ym

z

yv
xv

2 2 tan

xy xy x y

o

m n v v

z v
− + +



2

x xm n

z
− + 2

02 tan

xv

v
+



z

2

02 tan

yv

v
+


2

y ym n

z
− +

2

2 2 tan

y y y

o

m n v

z v
+ +


2 2 tan

xy xy x y

o

m n v v

z v
+ +



2

2 2 tan

x x x

o

m n v

z v
+ +



2 2

0 x yv v v= +

1

0 tan ( )y xv v−j =

x

y z



0v

0 cotv 

0 cot

2

v cotz 

0 cot

2

v 

z

Slabs - Yield conditions

Equilibrium solution for general shell loading (statically admissible stress state): 

• Sandwich covers carry bending and twisting moments (substituted by statically equivalent force couples m/z in bottom and top 

cover) as well as possible membrane forces (substituted by statically equivalent forces n/2 in each cover)

→ In-plane loading of each cover, treatment as membrane elements with corresponding reinforcement, dimensioning with yield

conditions for membrane elements 

→ Suitable for the design of generally loaded shell elements (8 stress resultants)

• Sandwich core absorbs shear forces

→ Sandwich core absorbs principal transverse force v0 in the direction j0 (see transverse shear in slabs)

NB: High membrane (compressive) forces: core can also be used for this (note interaction with v)
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Sandwich model

The figure shows the sandwich model again, but here with the internal forces of the slab element under

general loading (bending stress state and membrane stress state). The general stress state can be

divided using equilibrium considerations. The membrane forces and the force couples from the bending

and twisting moments are distributed to the sandwich covers (loads acting on sandwich covers are

statically equivalent to the applied stress resultants). Each cover is subjected to in-plane loading only and

can, therefore, be treated as a membrane element. The design of the reinforcement is based on the yield

conditions for membrane elements.

The sandwich core absorbs the transverse (= slab) shear forces. The principal transverse shear force v0 is

carried in direction j0. This direction can be treated analogously to the web of a beam (transverse

reinforcement analogous to stirrups in a girder web). The resulting longitudinal tensile forces in the

«chords» of the «beam» acting in direction j0 must be resisted in the slab plane by the sandwich covers.

The last terms of the sandwich cover forces shown in the slide correspond to the components of these

«chord tensile forces» (see formulas on slide 8 for the components of v0).

xv xm

xym
yxn

xn

xyn
yn

yv

xym

ym

z

yv
xv

2 2 tan

xy xy x y

o

m n v v

z v
− + +



2

x xm n

z
− + 2

02 tan

xv

v
+



z

2

02 tan

yv

v
+


2

y ym n

z
− +

2
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y y y

o

m n v

z v
+ +


2 2 tan

xy xy x y

o

m n v v

z v
+ +



2

2 2 tan

x x x

o

m n v

z v
+ +



2 2

0 x yv v v= +

1
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x

y z
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2

v cotz 
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v 
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Slabs - Yield conditions

Equilibrium solution for general shell loading (statically admissible stress state): 

• Sandwich covers carry bending and twisting moments (substituted by statically equivalent force couples m/z in bottom and top 

cover) as well as possible membrane forces (substituted by statically equivalent forces n/2 in each cover)

→ In-plane loading of each cover, treatment as membrane elements with corresponding reinforcement, dimensioning with yield

conditions for membrane elements 

→ Suitable for the design of generally loaded shell elements (8 stress resultants)

• Sandwich core absorbs shear forces

→ Sandwich core absorbs principal transverse force v0 in the direction j0 (see transverse shear in slabs)

NB: High membrane (compressive) forces: core can also be used for this (note interaction with v)
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Sandwich model



yv
xym

ym

z

xv xm
xym

yv
xv

xm

z
−

ym

z
−

ym

z

xm

z

z

2 2

0 x yv v v= +

1

0 tan ( )y xv v−j =

x

y z

z

xym

z
−

xym

zxym

z

xym

z
−

Slabs - Yield conditions

→ Slabs under pure bending without shear reinforcement:

nx = ny = nxy = 0, v0d  ≤ vRd = kd cd dv

→ Terms with nx, ny, nxy are zero

→ Terms with vx, vy  are omitted if an uncracked core is assumed.

→ Yield conditions for slabs based on the sandwich model = simplification of the general case of a shell element with eight stress resultants 

(slab: only bending and twisting moments considered, consideration of transverse (slab) shear forces → see shear force in slabs)
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Sandwich model

Most slabs are subjected to bending and twisting and are designed without shear reinforcement. The

membrane stress state disappears and the shear force is resisted by the shear strength of the concrete

(since shear reinforcement in slabs is relatively complex to lay, it is economically advantageous to choose

a slab thickness that does not require shear reinforcement at least outside the load application areas. This

should only be done for slab thicknesses up to approx. 400 mm).

The internal forces of the sandwich element are simplified in this case: Only one normal and one shear

stress component act on the covers in each direction and the transverse shear force is transferred by pure

shear stresses in the core.
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xym

ym

z

xv xm
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xv

xm

z
−

ym

z
−

ym

z

xm

z

z

2 2

0 x yv v v= +

1

0 tan ( )y xv v−j =

x

y z

z

xym

z
−

xym

zxym

z

xym

z
−

Slabs - Yield conditions

→ Slabs under pure bending without shear reinforcement:

nx = ny = nxy = 0, v0d  ≤ vRd = kd cd dv

→ Terms with nx, ny, nxy are zero

→ Terms with vx, vy  are omitted if an uncracked core is assumed.

→ Yield conditions for slabs based on the sandwich model = simplification of the general case of a shell element with eight stress resultants 

(slab: only bending and twisting moments considered, consideration of transverse (slab) shear forces → see shear force in slabs)
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Sandwich model



Slabs - Yield conditions

yv
xym

ym

z

xv xm
xym

yv
xv

xym

z
−

xm

z
−

ym

z
−

xym

z
ym

z

xm

z

z

2 2

0 x yv v v= +

1

0 tan ( )y xv v−j =

x
y z

z

→ Reinforcement of the sandwich covers = yield conditions for slabs according to static method:

' '

'

'

1

1

xyx
sx sd

y xy

sy sd

xyx
sx sd

y xy

sy sd

mm
a f k

z z

m m
a f

z k z

mm
a f k

z z

m m
a f

z k z

 +

 +

 − + −

 − + −

xym

z

xym

z
−

xu sx sd yu sy sd

xu sx sd yu sy sd

m za f m za f

m za f m za f

= =

   = =

1

1

xu x xy yu y xy

xu x xy yu y xy

m m k m m m k m

m m k m m m k m

−

−

 +  +

    − +  − +
i.e. 

2

2 ''

0

0

xy yu yxu x

xy yu yxu x

m m mm m

z z z z z

m m mm m

z z z z z

    
− − − =    

    

   
− + + =     

    

and by multiplication follows: Condition for «Regime 1»

(not from normal moment 

yield criterion):

' '

cd inf xu x yu y

cd sup xu x yu y

f zt m m m m

f zt m m m m

 − + −

 + + +
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Sandwich model

The sandwich model is based on the static method of the theory of plasticity and thus provides a lower limit

value of the resistance. The design criteria for the membrane elements of the sandwich covers, combined with

the lever arm z, result in the yield conditions for slabs as shown in the figure.

It can be seen that these correspond to the normal moment yield criterion (as long as no failure due to

concrete cracking occurs).

Slabs - Yield conditions
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Sandwich model



Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)

, , , ,

' '
x u y u u x u y um m m m m= = = =Isotrop bewehrt: 

2 1
2 2

s sd
u s sd cd

cd

a f
m a f d d f

f

   
= − =  −   

  

• Normal moment yield condition: ,xy u um m=
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s sd cda f df= 

cdf

c d= 

1
2

d
 

− 
 

Isotropic reinforcement:

𝑚𝑥𝑦
2 − 𝑚𝑥,𝑢 − 𝑚𝑥 𝑚𝑦,𝑢 − 𝑚𝑦 = 0 with 𝑚𝑥, 𝑚𝑦 = 0

→ 𝑚𝑥𝑦,𝑢 = 𝑚𝑥,𝑢𝑚𝑦,𝑢 = 𝑚𝑢 analogous for 𝑚′

The load bearing behaviour under pure twisting can also be investigated with the sandwich model. It is an

application of the static method of the theory of plasticity and therefore provides a lower limit value of the

resistance. In an isotropically reinforced slab, the positive and negative bending resistances in both

directions are identical (neglecting the difference in static depth due to the reinforcement layers).

It follows from the normal moment yield condition that the maximum resisting twisting moment

corresponds exactly to the bending resistance mu.

Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)

, , , ,

' '
x u y u u x u y um m m m m= = = =Isotrop bewehrt: 
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• Normal moment yield condition: ,xy u um m=
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Isotropic reinforcement:

𝑚𝑥𝑦
2 − 𝑚𝑥,𝑢 − 𝑚𝑥 𝑚𝑦,𝑢 − 𝑚𝑦 = 0    with 𝑚𝑥, 𝑚𝑦  =  0

→ 𝑚𝑥𝑦,𝑢 = 𝑚𝑥,𝑢𝑚𝑦,𝑢 = 𝑚𝑢                    analogous for 𝑚′



Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)

• Lower limit value
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All reinforcements yield in tension:

Section at 45°

top bottom

With the help of the sandwich model, the twisting moments on a slab element can be divided into

equivalent force couples acting on the covers of the sandwich. Thus, the covers experience a pure shear

load in their plane. In each cover there is a compression field in the concrete which is inclined by +45° and

-45°, respectively, to the reinforcement directions. Together with equally high tensile forces in both

reinforcements, it is in equilibrium with the applied shear load. If the tensile forces in the reinforcements

are taken into account in the calculation of the bending resistance, a higher concrete compression zone is

required (to compensate for the tensile force of the reinforcement in the compression zone), resulting in a

smaller lever arm of the internal forces, which reduces the bending resistance.

Note that tensile forces in the reinforcement in the compression zone are kinematically admissible: The

reinforcement strains, in the directions x and y, can both be positive while the principal compressive strain

(under 45° in this case) is negative. For further details, see membrane elements (load-deformation

behaviour, Mohr’s circles for strains).

Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)

• Lower limit value
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All reinforcements yield in tension:

Section at 45°

top bottom



Slabs - Yield conditions

Pure twisting - Investigation with sandwich model (lower limit value)
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Normal moment 

yield condition

Twisting moment 

resistance

This reduction of the bending resistance at high reinforcement ratios leads to large differences in the

maximum resisting twisting moments in comparison with the normal moment yield criterion. The normal

moment yield condition overestimates the resistance in these areas (see slide 21). Special care must

therefore be taken for corner supports (large twisting moments!).

Slabs - Yield conditions
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Normal moment 

yield condition

Twisting moment 

resistance



To determine the yield condition Y(mx, my, mxy) = 0 , the bending resistances of the positive or negative

yield lines (normal moment resistances) of k reinforcement layers in the reinforcement directions yk are

superimposed. Due to the skew directions of the reinforcement layers, a resistance mxyu results, in

contrast to orthogonal reinforcement. This results in the normal moment yield condition for skew

reinforcement.

As with orthogonal reinforcement, the concrete compression zone heights are generally different, cx ≠ cy.

This means no kinematically admissible displacement state can be assigned. It is, therefore, a lower limit

value of the ultimate load.

On the other hand, the concrete compression zones of the different reinforcement directions do not run

orthogonal to each other in the case of skew reinforcement and thus violate the yield condition. The

resistance is thus overestimated. However, a good approximation is achieved for not too high

reinforcement ratios.
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Superposition of the bending resistances of k reinforcement layers in the reinforcement directions yk

(Transformation of all {mk = mku, mt = 0} in the directions x,y):

Normal moment yield condition for skew reinforcement:

('' since different compression zone heights → no compatible mechanism. But compression fields in the concrete are not 

orthogonal → fcd exceeded, thus no clear lower/upper limit value. For not too high reinforcement ratios however very good 

approximation)

Check condition                                        in all directions j (see next slide)
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Superposition of the bending resistances of k reinforcement layers in the reinforcement directions yk

(Transformation of all {mk = mku, mt = 0} in the directions x,y):

Normal moment yield condition for skew reinforcement:

('' since different compression zone heights → no compatible mechanism. But compression fields in the concrete are not 

orthogonal → fcd exceeded, thus no clear lower/upper limit value. For not too high reinforcement ratios however very good 

approximation)

Check condition                                        in all directions j (see next slide)
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Analogous to orthogonal reinforcement, the characteristic curves of the action ma and the resistances mau

and m’au can be expressed as a function of direction j. The point of contact of the two curves corresponds

to the controlling direction ju in which the yield condition is satisfied.

Additional remark

- The maximum and minimum normal moment resistances are in the principal directions of mau(j) or

m’au(j) respectively (no longer in directions j=0 and j=p/2 as for ortogonal reinforement) .
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Check condition in all directions j:

[Seelhofer (2009)]
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Superposition of the bending resistances of k reinforcement

layers in the reinforcement directions yk

(Transformation of all {mk = mku, mt = 0} in the directions x,y):

Bending resistance in the direction φ:

Check condition in all directions j

→ Normal moment yield criterion for skew reinforcement: 
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Superposition of the bending resistances of k reinforcement

layers in the reinforcement directions yk

(Transformation of all {mk = mku, mt = 0} in the directions x,y):

Bending resistance in the direction φ:

Check condition in all directions j

→ Normal moment yield criterion for skew reinforcement: 
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The example shows a two-sided supported slab with the shape of a parallelogram. The reinforcement is

arranged at an angle of 60° (as appears natural for the given slab geometry in plan). The plastic moments

of resistance are the same in x- and n-direction.

The bending resistances can be superimposed in the directions of the coordinate axes. The normal

moment yield criterion shows that the maxima and minima of the resistance do not occur in the

reinforcement directions but in the angle bisectors. The resistance is already significantly reduced with a

slight skew between the two reinforcements for directions close to the bisector of the obtuse angle (and

enlarged in the direction of the acute angle).

Slabs - Yield conditions

Example of skew reinforcement
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Maxima and minima of the bending resistances do not occur 

in the reinforcement directions.

Rather, a minimum occurs in the direction of the bisector of 

the obtuse angle. The resistance is significantly reduced even 

with slight skewness. 
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For the derivation of the design equations, it is helpful if the internal forces are defined in an oblique

coordinate system and thus based on skew stress components. The corresponding bending and twisting

moments can then be defined according to the figure. The definitions of the normal moment yield criterion

and the equivalent representation in parametric form are analogous to orthogonal reinforcement.
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Using oblique coordinates, design equations can be formulated (as with membrane elements):

The normal moment yield criterion in oblique coordinates is: 

(with conditions)

Notation in parametric form

→ direct dimensioning possible: 

(Parameters k and k' freely selectable, minimum reinforcement results for k = k' = 1)

sin cos cot 2 cosx y xym m m m = y + y y − y

( )( )2 sin sin 0xu nuY m m m m m  = − y − y − =

[Seelhofer (2009)]
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Slabs - Yield conditions

Yield conditions for skew reinforcement

Using oblique coordinates, design equations can be formulated (as with membrane elements):

The normal moment yield criterion in oblique coordinates is: 

(with conditions)

Notation in parametric form

→ direct dimensioning possible: 

(Parameters k and k' freely selectable, minimum reinforcement results for k = k' = 1)
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[Seelhofer (2009)]

( ) ( )11 1

sin sin
xu num m k m m m k m−

    +  +
y y

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 38

cotxy ym m m m = = − ysinym m = y

' sin sinxu xum m m− y   y

sin tan cosuk = y j + y

( )( )2' ' 'sin sin 0xu nuY m m m m m  = − y + y + =

' sin sinnu num m m− y   y

( ) ( )( )
1' ' ' '1 1

sin sin
xu num m k m m m k m

−

    − +  − +
y y

' 'sin tan cosuk = y j + y



5 Slabs

In-depth study and additions to Stahlbeton II

(Chapter 7.2)

5.3 Equilibrium solutions
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Structural analysis / Calculation methods - Overview

Slabs - Equilibrium solutions

Elastic slab theory Plastic slab theory

Solution of the slab

differential equation

Finite Element

Method

Approximate solutions 

with energy (virtual work) considerations

Static method of

the theory of plasticity

Kinematic method of

the theory of plasticity

Moment fields

Equivalent frame method

Strip method

Yield line method

simplified

advanced
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Solutions for the design and verification of the structural safety of 

reinforced concrete slabs based on the static and kinematic methods of 

the theory of plasticity have already been dealt with in Stahlbeton II. 

The corresponding knowledge is assumed and only shortly repeated here. 
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Solutions for the design and verification of the structural safety of 

reinforced concrete slabs based on the static and kinematic methods of 

the theory of plasticity have already been dealt with in Stahlbeton II. 

The corresponding knowledge is assumed and only shortly repeated here. 



Slabs - Equilibrium solutions

Overview

Equilibrium solutions are based on the lower or static limit theorem of the theory of plasticity.

Requirements: → statically admissible stress state (equilibrium and static boundary conditions satisfied)

→ yield conditions not violated anywhere

Determination of statically admissible stress states:

• Elastic slab theory: In addition to equilibrium and static boundary conditions, the elastic compatibility conditions are also satisfied here. 

The finite element method can be used to treat cases with any geometry and load (the most common method 

today). In addition, there are various textbooks with corresponding tables.

• Moment fields: Combination of different moment fields for selected geometries and loads

• Strip method: This method, which goes back to Hillerborg, assumes strip-shaped bending elements in two usually 

orthogonal directions (simple strip method). With the advanced strip method, concentrated forces can be treated

with the aid of corresponding moment fields or load distribution elements.

• Equivalent frame method: Global equilibrium solutions for flat and mushroom slabs (distribution of moments in transverse direction based on 

elastic solutions).
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A lower limit value for the load capacity of a slab results according to the static limit value theorem of the

theory of plasticity, if statically admissible stress states are considered which satisfy the equilibrium

conditions and the static boundary conditions, and do not infringe the yield conditions anywhere. If a slab

is designed on this basis, its load capacity is in no case less than the load associated with the equilibrium

solution under consideration, provided that its deformation capacity is sufficient. The flow of forces can be

tracked down to the last detail, which enables the development of the corresponding detailing.

Today, the design of reinforced concrete slabs is largely based on calculations using the finite element

method, which is based on Kirchhoff's theory of thin elastic slabs with small deflections. However, cracks

often occur even under dead load, especially near supports or concentrated loads, which is associated

with a redistribution of the internal forces. Further rearrangements result from restraint forces, which are

always present but practically cannot be calculated. Thus, the internal forces already deviate from the

values calculated for a homogeneous elastic, initially stress-free behaviour in the serviceability limit state.

It is therefore incorrect to justify the use of internal forces calculated according to Kirchhoff's theory of thin

elastic slabs by stating that the «real» stress state is recorded with sufficient accuracy. Rather, it is a

special procedure according to the static method of the theory of plasticity, since the elastic solution

merely provides one of the infinite number of possible equilibrium states in the slab.

Slabs - Equilibrium solutions

Overview

Equilibrium solutions are based on the lower or static limit theorem of the theory of plasticity.

Requirements: → statically admissible stress state (equilibrium and static boundary conditions satisfied)

→ yield conditions not violated anywhere

Determination of statically admissible stress states:

• Elastic slab theory: In addition to equilibrium and static boundary conditions, the elastic compatibility conditions are also satisfied here. 

The finite element method can be used to treat cases with any geometry and load (the most common method 

today). In addition, there are various textbooks with corresponding tables.

• Moment fields: Combination of different moment fields for selected geometries and loads

• Strip method: This method, which goes back to Hillerborg, assumes strip-shaped bending elements in two usually 

orthogonal directions (simple strip method). With the advanced strip method, concentrated forces can be treated

with the aid of corresponding moment fields or load distribution elements.

• Equivalent frame method: Global equilibrium solutions for flat and mushroom slabs (distribution of moments in transverse direction based on 

elastic solutions).
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Slabs - Equilibrium solutions

Overview

Equilibrium solutions are particularly suitable for the design of slabs. If a slab is dimensioned according to these methods and 

if its deformation capacity is sufficient, its load-carrying capacity will in no case be less than the corresponding load.

The static method of the theory of plasticity ensures sufficient bending resistance. However, the influence of shear forces is 

not taken into account and must be investigated separately.

If a compatible failure mechanism is found for an equilibrium solution (see chapter yield line method), it corresponds to a 

complete solution according to the theory of plasticity. This results in the (theoretically) exact ultimate load.

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 42

If the design is strictly based on the moments determined according to the elastic slab theory, unpracticle

solutions are often obtained. In practice, the moments are therefore often averaged in the transverse

direction over a certain width, especially in the area of moment peaks near concentrated loads (point

supports). This procedure is questionable as the influence on the twisting moments and on the moments

perpendicular to the considered direction is neglected and therefore does generally not result in a state of

equilibrium. Although this is usually harmless, it is generally unsatisfactory, and the question arises

whether if constant moments over a certain width are assumed, this should not better be done already

when calculating the internal forces.

The static method of the theory of plasticity meets this desire for greater freedom in practical

dimensioning. In the following chapters, methods suitable for manual calculations are presented which

make it possible to design a slab with equilibrium solutions.

The design of a slab according to the static method of the theory of plasticity ensures sufficient bending

resistance. The influence of shear forces is not taken into account. This applies in particular to the FE

programs mentioned. Since shear forces can lead to sudden failure and the brittle nature of the failure

makes it impossible to rearrange the internal forces, they should not be ignored in the design. For the

consideration of their influence please refer to lecture 4.2 Slabs part 2

Slabs - Equilibrium solutions

Overview

Equilibrium solutions are particularly suitable for the design of slabs. If a slab is dimensioned according to these methods and 

if its deformation capacity is sufficient, its load-carrying capacity will in no case be less than the corresponding load.

The static method of the theory of plasticity ensures sufficient bending resistance. However, the influence of shear forces is 

not taken into account and must be investigated separately.

If a compatible failure mechanism is found for an equilibrium solution (see chapter yield line method), it corresponds to a 

complete solution according to the theory of plasticity. This results in the (theoretically) exact ultimate load.
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Slabs - Equilibrium solutions

Simple strip method: Basics
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→ Neglect the twisting moments, satisfy equilibrium conditions only with mx and my

→ Divide the load q into the parts qx and qy (qxy = 0)

→ Total load q is thus carried by the beam load-bearing effect in x- and y-direction

→ Distribution of the load can be freely chosen. 

→ In order to ensure sufficient deformation capacity and satisfactory behaviour in serviceability limit state, qx and qy should be

chosen cautiously.

→ This also applies to the calculation of the individual (often hyperstatic) strips according to beam theory.

The idea of considering a slab as a group of beams orthogonal to each other was developed very early on. Marcus (1931) 

suggested that the distribution of the load should be such that the elastic deflections of the fictitious beams in the middle of the 

slab coincide (→ hint for selection of distributed load: per direction ~ L-4).

Hillerborg showed that the strip method is an application of the lower limit theorem of the theory of plasticity and generalised 

the method. 
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The basic idea of the simple strip method is to neglect twisting moments and to satisfy the equilibrium

conditions with bending moments mx and my alone. By dividing the load q into two parts qx and qy, the

equilibrium condition with mxy = 0 results in the formulae according to the slide. Thus, in contrast to the

generally valid relation, qxy is set equal to zero. The total load q is transferred by the beam load-bearing

effect in the directions x and y.

The idea of investigating the load-bearing behaviour of slabs by means of mutually orthogonal groups of

beams was used at a very early stage. Hillerborg showed that the treatment of slabs as mutually

orthogonal groups of beams represents an application of the lower limit theorem of the theory of plasticity.

He also showed that the distribution of the load into the two proportions qx and qy is free and at each point

of the slab may be chosen differently. In order to ensure sufficient deformation capacity and satisfactory

behaviour in the serviceability limit state, qx and qy should be selected cautiously. The same applies when

selecting any redundant variables when calculating hyperstatic individual strips according to the beam

theory.
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the method. 

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 43



Slabs - Additions

Advanced strip method: Load distribution elements

Load distribution elements are used to treat supports and concentrated loads with the strip method. These convert a point 

load into a uniformly distributed load or vice versa. They thus correspond to the solutions for point-supported slabs (in the 

middle) under uniform loads. 

Supports: The load distribution elements are regarded as area bearings with uniform compression, which are loaded by 

indirectly supported strips or (usually) hidden beams. The bending resistances resulting from the beams are increased in 

order to account for the bending resistances required for load transfer in the column area (= load distribution element).

Individual loads: The individual loads are applied to the slab as uniformly distributed surface loads, which are transferred to 

the supports by strips or (usually) hidden beams. The resulting bending resistances of the strips are superimposed with the 

bending resistances required to convert the point load into an evenly distributed area load (= load distribution element).
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The strip method is suitable primarily for the treatment of line or surface-supported slabs with distributed

loads. The advanced strip method also allows concentrated loads and point supports to be taken into

account. This is illustrated on the following slides for point supports. Concentrated loads can be treated

analogously.

The use of the advanced strip method can be similar to the handling of hidden beams. The first step is to

think of the point supports as surface bearings with finite dimensions and uniformly distributed reactions

and calculate the corresponding strip moments mx and my. Hidden beams can also be taken into account

for this purpose. In the second step, the required bending resistances mxu and myu of the load distribution

elements are superimposed on these moments. Thereby the uniformly distributed reactions of the surface

bearings, applied with reverse sign, can be carried to the point-shaped supports, without violating the yield

conditions.
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Slabs - Additions

Advanced strip method: Load distribution elements - Repetition moment fields

The moment fields below are suitable as "load distribution elements" for converting point loads into area loads.

If constant positive moments mx und my are superimposed on them, the lower bound value for the load-carrying capacity of an 

infinitely extended flat slab under uniformly distributed load is determined with mxu = myu = mu  and m’xu = m’yu = lmu (Marti 

1981):
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In the second step, an equilibrium solution is required for a rectangular slab with free edges supported in

the middle and loaded by a uniformly distributed surface load. For this purpose, the discontinuous moment

fields illustrated in the figure (or the resulting equations) can be used for a square slab. The yield condition

for positive moments is not violated anywhere with mxu = myu = mu only being satisfied at the centre of the

slab. The yield condition for negative moments is also not violated anywhere, m’xu = m’yu = mu is only

satisfied along the coordinate axes x = 0 and y = 0. If constant positive moments mx and my are

superimposed on these moment fields, mxu = myu = mu and m’xu = m’yu = lmu give a lower limit value q for

the load capacity of an infinitely extended flat slab under a uniformly distributed load.
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The figure shows further examples of point-supported load distribution elements with the associated

conditions of the bending resistances.

For the circular slab, the same result can be derived with the upper limit theorem of the theory of plasticity,

which corresponds to the complete solution.

For the square slab with free edges, a solution according to Nielsen (1984) is also possible based on the

circular slab. The negative resistance m'u = Q/8, which corresponds to the mean value of the negative

bending moments in the support axes, must be maintained over the entire slab, while the positive

resistance may be graded parabolically as with the circular slab. For a slab of any geometry under point

load Q, this solution actually corresponds to an upper limit value. Since in reality there are always finite

column dimensions and the lower limit value is strongly on the safe side, the relationships can still be used

for the design.

If the area on which the uniformly distributed surface load acts is not square but rectangular, the

transformation theorem is used to obtain the formulations given above.

Additional remark

− By means of the transformation theorem, a solution valid in the coordinates x and y for an isotropically

reinforced slab under distributed load q and point load Q with the bending resistances mu (positive

moments) and m'u (negative moments) can be transferred to an orthotropically reinforced slab with myu

= ·mxu = ·mu and m’yu = ·m’xu = ·m’u. The coordinates are to be transformed according to the

relations x* = x and y* = y√m, a concentrated load according to Q* = Q·√, and distributed loads q* = q

(see slide 56).

Slabs - Additions

Advanced strip method: Load distribution elements

(complete solution)

Suitable as load distribution elements: 

Square and rectangular slabs
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Slabs - Additions

Advanced strip method: Load distribution elements
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Slabs - Additions

05.12.2023 47





q

Load transfer:

 Total load first carried in y-direction (hidden beam as 

area bearing a·bs) 

 Transfer of the reactions on a·bs by the hidden 

beam in x-direction to the surface bearings as·bs

Advanced strip method: Example rectangular slab, simply supported on one side, supported on 2 supports
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The example illustrates the application of the load distribution elements on a rectangular slab under a

uniformly distributed area load. It is simply supported on one side and supported on two supports on the

other side.

The entire load is first carried in the y-direction, whereby the hidden beam of width bs along the free edge

is regarded as an area bearing with uniformly distributed bearing compression. The corresponding

reactions are then carried by the hidden beam in the x-direction, and the supports are now regarded as

surface bearings with bearing compressions evenly distributed over the as·bs area. In the last step, the

calculated moments are superimposed with the required bending resistances mu for the load transfer in

the support area as·bs. (i.e. for the absorption of the uniformly distributed support compressions applied

with reversed signs as load by the concentrated reaction).

Slabs - Additions
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Slabs - Additions

q

Load transfer:

 Determination of the required bending resistances for the 

conversion of the area load qs on as·bs into the single load Qs

 Superposition of all necessary bending resistances
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Advanced strip method: Example rectangular slab, simply supported on one side, supported on 2 supports

According to the superposition of the moment resistances, both upper and lower reinforcement in both

reinforcement directions is required in the area of point loads and point supports. This is due to the fact

that the point loads are carried by twisting moments with respect to the reinforcement directions, which

require both upper and lower reinforcement according to the yield conditions.

By using static discontinuities, it would be possible to carry point loads even without twisting moments with

respect to the reinforcement directions. However, this is not further explained here.
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Advanced strip method: Example rectangular slab, simply supported on one side, supported on 2 supports
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In-depth study and additions to Stahlbeton II

(Chapter 7.3)

5.4 Failure mechanisms
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Structural analysis / Calculation methods - Overview

Slabs – Failure mechanisms

Elastic slab theory Plastic slab theory

Solution of the slab

differential equation

Finite Element

Method

Approximative solutions 

with energy (virtual work) considerations

Static method of

the theory of plasticity

Kinematic method of

the theory of plasticity

Moment fields

Equivalent frame method

Strip method

Yield line method

simplified

advanced
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Slabs – Failure mechanisms

Yield line method

• The yield line method (Johansen, 1962) is an application of the kinematic method of the theory of plasticity.

• Procedure: Assume a kinematically admissible mechanism, then equate the external work done by the applied loads with 

the internal work (dissipation in rotating yield lines).

→ upper limit value for ultimate load.

• Usually different failure mechanisms have to be investigated, whereby for each mechanism the ultimate load has to be

minimised with regard to possible free parameters.

• Rigid parts of the mechanisms usually have a high degree of internal static indeterminacy in contrast to beam structures. A 

strict plasticity verification (check that the yield conditions are not violated inside the rigid parts) is therefore hardly possible, 

except in simple special cases.
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The yield line method dating back to Johansen (1962) is an application of the kinematic method of the

theory of plasticity. By equating the external work done by the applied loads with the internal work done by

rotating the yield lines for a kinematically admissible failure mechanism, an upper limit value for the load is

obtained. Usually it is necessary to investigate different failure mechanisms and for each mechanism the

ultimate load has to be minimised with regard to possible free parameters. Since the rigid parts of the

mechanisms are usually highly statically indeterminate, it is rarely possible to carry out a strict plasticity

verification, except in simple special cases, in contrast to beam structures.
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Slabs – Failure mechanisms

Yield line method

• In comparison to solutions based on the elastic slab theory or equilibrium solutions, the yield line method is quite easy to

apply, especially for the verification of existing structures → The kinematic method of the theory of plasticity has become 

much more widespread for slabs than for beams and membrane elements (very widespread especially in Scandinavia, also 

for design).

• The "equilibrium method" (Ingerslev, 1923) can be used to circumvent the analytical minimisation process, which is often 

complex, when using the yield line method. Here, equilibrium is formulated at the individual, rigid slab parts of a mechanism, 

whereby so-called "nodal forces" are to be considered. However, the method is only valid to a limited extent (partly

disproven recently), and the minimisation process can be carried out without any problems using numerical methods today. 

It is therefore not dealt with in this course.
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In comparison with solutions based on the elastic slab theory or equilibrium solutions, the yield line

method is quite easy to apply. For this reason, the kinematic method of the theory of plasticity has become

much more widespread for slabs than for beams and membrane elements. This is probably also due to

the fact that solutions according to the yield line method were initially often regarded as lower limit values

for the ultimate load (ignoring the upper and lower bound theorems of the theory of plasticity and in view of

the fact that the ultimate load in experiments is often considerably higher than the calculated values).

The analytically complex minimisation process of the yield line method can be circumvented through the

"equilibrium method" (Ingerslev, 1923), which was used some years before the widespread use of the

yield line method already. Here equilibrium is formulated at the individual, rigid slab parts of a mechanism,

whereby certain so-called «nodal forces» are to be considered. Since this method is only valid to a limited

extent (partly disproven, though widely unknown) and the minimisation process can be carried out today

without any problems by numerical methods, this method is not discussed here.
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whereby so-called "nodal forces" are to be considered. However, the method is only valid to a limited extent (partly

disproven recently), and the minimisation process can be carried out without any problems using numerical methods today. 
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Slabs – Failure mechanisms

Yield line method – Dissipation (internal work) in a yield line

• Slab, orthogonally reinforced (x, y)

• Yield line in any direction t: 

Neglecting membrane forces

(nn = 0), it applies:

• Using the relationship:

• Results in the dissipation:

• With rotational velocities

around the y- or x-axis:

→ Dissipation:

= Sum of the products

in the two reinforcement

directions of:

n ndD m dt= 

2 2cos sinnu xu yum m m= j + j

( )2 2cos sinxu yu ndD m m dt= j + j 
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bending resistance
rotational velocities around 

the corresponding axis

length of the yield line

projected onto this axis
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For the dissipation per unit length of a yield line in a slab element stressed by bending and twisting

moments as well as membrane and shear forces, dD = mn· ሶ𝜔n+nn· ሶ𝛿n is obtained. ሶ𝜔n and ሶ𝛿n describe the

joint rotation and the joint opening in the middle plane of the slab. For vanishing membrane forces, nn = 0,

the dissipation work per element length dt of a yield line in t-direction is dD = mn· ሶ𝜔·dt.

The bending resistance of an orthotropically reinforced slab in any direction rotated at angle j to the x-axis

is described by the relationship shown on slide 16. Through substitution, the dissipation as a function of

the bending resistances in the x- and y-direction is obtained. The rotational velocity ሶ𝜔n can also be

transformed into its components according to the coordinate axes in the figure.

According to the resulting relationship, the dissipation corresponds to the sum of the products of the

bending resistance, the rotational velocity around the corresponding axis and the length of the yield line

projected onto this axis in the two reinforcement directions. This is very helpful in practice, as it is much

simpler than calculating the relative rotations of neigbouring slab parts and the normal moment resistance

in the corresponding direction, particularly when varying yield line directions to minimise the ultimate load.
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Slabs – Failure mechanisms

Example, units [m, kNm/m]
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1

1/3 + 1/4

x - dir. y - dir. 

The example shows a rectangular slab, which is clamped on two sides, simply supported on one side and

free on the fourth side. The reinforcement is graded so that two areas with different reinforcement

resistances are created. The chosen mechanism consists of a pyramid and a prism, the proportions of

which are chosen according to the dividing line of the resistances.

The position of the pyramid tip could also be optimised to minimise the dissipation = internal work (the

external work is independent of the horizontal position of the tip since the volume of the failure figure

remains the same). Equating the internal and external work results in the load capacity q.

Slabs – Failure mechanisms

Example, units [m, kNm/m]

3

2

Signatures for yield lines

(n = direction of the normal of the border)

positive yield line,

mn = mnu

negative yield line,

mn = -mnu’ = λmnu

λ = mu’/mu
7

q

68xum =

22yum = ' 0yum =

' 68xum =

23xum =

22yum = ' 34yum =

' 36xum =

x

y

1

1/3

1/3
1 1/4

Work of external forces              (pyramid                         + prism                          ) - q 

Dissipation work

3 7 2 7 41 1
1

3

1

2
q q

 
=    +   = 

 

1 1 1 1

4 4 4
68 2 68 2 23 3 36 3 22

1 1

3 3 4

1
7 34 7 31 2

1

3
. 5

3
1D

   
=  +  +   +  +  +   +   +   =   

   

W =

222.2 /uW D q kN m= → 

3 4
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Example: Optimisation of yield line geometry

( ) ( ) ( )
( )

( )
( )

( ) ( ),1 0 ,1 0 ,2 0 ,2 0 ,2 ,2

1 1 1 1 1 1 1 1
1 1

1 1 1 1 1 1
xu xu xu xu yu yuD m b m b m b m b m a m a

a a a a a b

   
  = +  +  + + −  + −  + +   

 −   −   −  −  −  −    

1

1
/[
(1

-
)·

b
]

1/(·a)
1

1/[(1-)·a]

·a (1-)·a

mxu,1 = 68 kN

mxu,2 = 23 kN

myu,1 = myu,2 = 22 kN

m’yu,2 = 34 kN

(1-)·b

·b

( ) ( ),

1 1 2
1 0 and 0 2.823 m; b 1.062 21.7 kPa

3 2 6

u u
u opt

q q
W b a b a q a b q q a m

  + 
= −    +     =    → = = →   =  = =    

,  −

q
u

[k
N

/m
2
]

Conclusion: Despite the strong differences in geometry, the ultimate load deviates only slightly (flat minima)!

x

y

Optimization of  (for  = opt )

Optimization of  (for  = opt )

m’xu,1 = 68 kN

m’xu,2 = 36 kN

(1-0)·b = 3 m

0·b = 2 m

The geometry of the yield line pattern is now optimised as a function of the position of the tip of the

pyramid. Hence, the dissipation D, the external work W and the ultimate load qu depend on the

parameters  and .

The optimal (=minimum) ultimate load can be obtained by partially differentiating qu with respect to a and b

and setting the results equal to zero; this yields two equations for the two unknown parameters defining

the geometry. The optimum position of the pyramid tip is at x = 2.83 m (rather than 3 m) and y = 1.062 m

(instead of 2 m), with an ultimate load of 21.7 kPa (rather than 22.2 kPa). Despite the relatively large

differences in geometry, the ultimate load is only slightly smaller..

Additional remark

- The curtailment of the reinforcement (at b-b) is maintained for the optimisation; otherwise, b = 0 would

be the optimum solution.

Slabs – Failure mechanisms
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Slabs – Failure mechanisms

Yield line method - Fan mechanisms

• Slab, isotropically reinforced (mxu = myu = mu)

• Principal radius of curvature in cone element  

from 

→ Principal curvature

→ Rotation

• Dissipation per area element in the fan:

1/ R

Rr =

1

1/ R

r

R

Rr =
1r

R
=



1 1

1 ( )Rr− − =  =

1rdj =  j

1
u udD m dr m rd drj=  = j


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um
1

r

R

dr
um

r dr d  j

dj

The figure illustrates the calculation of the dissipation for a fan mechanism in an isotropically reinforced

slab, mxu = myu = mu.

The principal curvature follows from geometrical considerations on the failure shape (fan = cone or

"funnel", simply curved = developable, radius of curvature rR), from which the rotation can be determined

by means of integration via the angle j. From this follows the differential dissipation work per area element

in the fan.
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Slabs – Failure mechanisms

Yield line method - Fan mechanisms

• Dissipation per area element in the fan:

Dissipation inside a fan with opening angle :

with

• where mu and R can be general functions of angle j

• Dissipation along the fan boundary (independent of R):

um
1

r

R

dr
um

r dr d  j

dj

1
u udD m dr m rd drj=  = j



( )

0 0

1
( , )

( )

R

uD m r dr d
R

j  
= j j 

j  
  Rr =

0 0

1
' ' ( , )u uD m Rd m r d

R

 

= j = j j 
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( ' ) (1 )u u uD m m m=  + =  + l

→ Dissipation in a fan with opening angle 

for constant mu and m’u = lmu :

The dissipation inside a fan with opening angle  follows from the integral, where mu and R can be general

functions of the angle j. The relationship for the dissipation along the fan boundary follows analogously

from the failure shape and the resulting integral over the angle j.

For constant mu and m’u = l·mu the dissipation work can be simplified according to the figure.
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( ' ) (1 )u u uD m m m=  + =  + l

→ Dissipation in a fan with opening angle 

for constant mu and m’u = lmu :



Slabs – Failure mechanisms

(*) A valid solution for a slab isotropically reinforced with bending resistances mu, m’u under

loads q and Q in the coordinates (x,y), can be applied to an orthotropically reinforced slab with 

myu = ·mxu = ·mu, m’yu = ·m’xu = ·m’u . The coordinates are to be transformed with x*= x, y*= 𝑦 𝜇, the loads with q*= q and 

Q*= 𝑄 𝜇
(The practical use is limited. For example, an isotropically reinforced square slab corresponds to an orthotropically reinforced 

slab with stronger reinforcement in the longer direction, which is unpractical).

1W Q= 

2 (1 )uD m= p + l

Concentrated load on slab of any geometry

um−l

um

Q 1( ) ( )2 ' 2 1u u u uQ m m m p + = p + l

Same ultimate load as with moment field for a centrically supported circular slab 

under uniform load (independent of R) → complete solution for a circular slab. 

Upper limit value for other cases.

By applying the transformation theorem (*), the upper limit value is obtained for an 

orthotropically reinforced slab of any geometry:

( ) ( )2 ' ' 2 1u xu yu xu yu xu yuQ m m m m m m p + = p + l
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As with orthogonal reinforcement the yield criterion can be represented by two elliptical cones. However,

the skew reinforcement results in the tips of the cones no longer lying in the plane mxy = 0. The points of

the enveloping surface are compatible with the positive (Y = 0) and negative (Y' = 0) yield lines. On the

intersection of the two surfaces, the stress points are compatible with the intersection of a positive and a

negative yield line. The points A and B, on the other hand, denote the intersection of two positive and

negative yield lines.

Slabs - Yield conditions

Yield conditions for skew reinforcement

Representation of the yield condition:

(two elliptical cones; compare with orthogonal reinforcement where the peaks lie in the plane mxy = 0 and the intersecting 

ellipse in a plane parallel to the mxy-axis).

[Seelhofer (2009)]

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 60

Slabs - Yield conditions

Yield conditions for skew reinforcement

Representation of the yield condition:

(two elliptical cones; compare with orthogonal reinforcement where the peaks lie in the plane mxy = 0 and the intersecting 

ellipse in a plane parallel to the mxy-axis).

[Seelhofer (2009)]

05.12.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 60



Slabs - Yield conditions

Skew reinforcement

Using the parametric form, the design (and the graphical representation) is possible analogous to orthogonal reinforcement.

[Seelhofer (2009)]

If no upper or lower reinforcement is required in one of the two reinforcement directions, refer to Seelhofer (2009).

1

,x 
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m
y

y

1

,n 

m
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yum
1k =

xym
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xm xym

xum
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0

sinm y

sinm y

( )1 2cot k−

sinm y

xum

0
k =num

1



sinm− y
0

sinm− y

sinm y
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2

1 'cot k−  
  

sinm y

'
xum

'

0
k =

'
num

1



( ) ( )

( ) ( )( )

1

1' ' ' ' ' '

1 1
sin tan cos

sin sin

1 1
sin tan cos

sin sin

xu nu u

xu nu u

m m k m m m k m k

m m k m m m k m k

−
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−

   

 +  + = y j + y
y y

 − +  − + = y j + y
y y
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