
2 In-plane loading
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2.6 Numerical modelling



Learning objectives
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Within this chapter, the students are able to:

▪ select the most suitable numerical model for each structural concrete problem, clearly differentiating 

design and assessment-oriented approaches.

o recognise the higher probability of making mistakes when increasing modelling complexity and the 

necessity to cross-check numerical models' results with simple handmade analysis.

o identify how to discretise a structural member with a combination of spine, planar, multilayer, and 

three-dimensional elements.

o discuss the workflow of selected numerical models.

▪ recall the main assumptions of the Compatible Stress Field Method, its range of applicability and the 

similitudes and differences to already studied equilibrium and compression field approaches.
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[Muttoni, 2018]

Levels of Approximation (LoA)

- From simple analyses (handmade) to nonlinear 

calculations (specific software)

- With every new LoA the knowledge on the behavior of 

the structure increases

- While a low LoA tends to be conservative, a higher LoA

does not always predict a higher load (hidden brittle 

mechanisms can be captured with high LoA)

- More complex models also increase the probability of 

making a modelling mistake → engineer should always 

cross check with simple hand calculations!
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Linear vs. non-linear finite element analysis

Linear Non-linear

σ

ε

strain

stress

σ

ε

strain

stress

1

Stress-strain relationship: 
FE solves 

E = 
1K u f u K f− = → = 

Stress-strain relationship: 
FE solves iteratively

1

.E const= ( )D ε

( )D  = 

( )K u u f =

Stresses depend linearly on strains.
→ directly obtain stresses with E and strains

Stresses depend non-linearly on strains.
→ stiffness matrix is obtained iteratively depending on 
strains / stresses and whether equilibrium is fulfilled

( )?D  = 



 D
No

Yes
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Modelling of structures

[Seelhofer, 2009]

Introduction

Structures can be modelled with linear or non-linear 

approaches and with

- 1D elements (spine)

- 2D elements

- 2D multilayer elements

- 3D elements
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Overview of numerical models for structural design and analysis
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Frame analysis with 1D members + cross section design

- Design task:

. Concrete geometry, loads, and boundary conditions are known

. Linear elastic finite element analysis (FEA) to determine 

internal forces [N, My, Mz, Vy, Vz, Tx]

. Design reinforcement and check concrete

- Time devoted to analysis: low

- Very common in practice for design, commercial software available
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2D analysis + design with membrane yield conditions

- Design task:

. Concrete geometry, loads and boundary conditions are known

. Linear elastic finite element analysis (FEA) to determine

internal forces [nx, nz, nxz] (elements with only membrane loading)

. Design reinforcement with yield conditions (k=1) and check concrete

- Time devoted to analysis: low

- Common in practice for design, commercial software available
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2D analysis + sandwich model + design with membrane yield 

conditions of outer layers

- Design task:

. Concrete geometry, loads, and boundary conditions are known

. Linear elastic finite element analysis (FEA) to determine

internal forces [nx, nz, nxz, mx, mz, mxz, vx, vz]

(elements with general shell loading)

. Transformation of the general shell loading to the sandwich model

. Design reinforcement in the outer layers with yield conditions (k=1)

and check concrete

- Time devoted to analysis: medium

- Common in practice for design

2

1 ( )( ) 0xz sx sx x sz sz zY n a f n a f n= − − − =

cotk = 
1

sx sx x xz

sz sz z xz

a f n k n

a f n k n−

 +

 +
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Compatible Stress Field Method (CSFM)

- Assessment task

. Concrete geometry, loads, and

reinforcement are known

. Non-linear finite element analysis (NLFEA) →

Compatible stress fields

Structures with only in-plane loading

Reinforcement and concrete are modelled separately

Suitable for Discontinuity Regions

Tension stiffening according to TCM & POM (1D)

- Time devoted to analysis: medium

- Commercial software available → Idea StatiCa Detail

- Increasingly used in practice for assessment and design

 → 
( )

constitutive

relationship

 
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Overview of numerical models for structural design and analysis
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Cracked Membrane Model Usermat (CMM-Usermat)

- Assessment task

. Concrete geometry, loads, and

reinforcement are known

. Non-linear finite element analysis (NLFEA) →

Compatible stress fields

Multilayer shell element

Reinforcement and concrete are modelled as a composite

Tension stiffening according to TCM (2D)

- Time devoted to analysis: high

- Used at ETHZ for research and expertise

 → 
( )

constitutive

relationship

 

[Thoma, 2018]
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Full non-linear finite element analyses 

- Assessment task

. Concrete geometry, loads, and

reinforcement are known

. Non-linear finite element analysis (NLFEA) →

Many available models (usually very complex)

Tensile strength usually considered for equilibrium

Not compliant with structural design codes

- Time devoted to analysis: very high

- Many commercial software available (Ansys, Abaqus, Atena, Diana…)

- Not a design tool. Rarely used in practice for assessment (skilled users)

 → 
( )

constitutive

relationship

 

[Cervenka, 2020]

[Cervenka, 2020]
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Cracked Membrane Model Usermat (CMM-Usermat)
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[Thoma, 2018]

[Thoma, 2018]

[Kaufmann, 1998]



Cracked Membrane Model Usermat (CMM-Usermat)
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Comparison between experiment and CMM-Usermat calculation

- Reinforced concrete shear wall: IWT2 (from Leonhardt and Walther)

. Indirectly supported plate with indirect load introduction

- Results

. Measured and calculated load-deformation curves agree well

. Same failure mechanism at exactly the same location

. Crack pattern at failure are also sufficiently similar

=1.0

=0.5

=0.5









0 (2)rm rms s= 

[Thoma, 2018]



Compatible Stress Field Method

Compatible Stress Field Method (CSFM) - Implemented in commercial software Idea StatiCa Detail

Continuous stress fields = Computer-aided stress fields

14.11.2024 19

Scope

• Simple method for efficient, code-compliant design and assessment of discontinuity concrete regions

• Including serviceability and deformation capacity verifications

• Direct link to conventional RC design: standard material properties, concrete tensile strength totally neglected for 

equilibrium (only its influence to the stiffness is accounted for)

Inspirations

• EPSF FE-implementation (strain compatibility, automatic determination of concrete reduction factor from strain state)

• Tension Chord Model TCM and Cracked Membrane Model CMM (tension stiffening, ductility and serviceability checks) 

Development / Credits

This project has received partial funding from Eurostars-2 

joint programme, with co-funding from the European Union 

Horizon 2020 research and innovation programme

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method

Experimental 
crack pattern

Hand-calculated 
stress fields

Numerical 

results EPSF 

Dimensioning/assesment of Discontinuity Regions: Previously existing computer-aided tools

[Mata-Falcón, 2015]

[Mata-Falcón et al., 2014]

[Muttoni & Fernandez Ruiz, 2007]

EPSF elastic plastic stress fields (Fernández Ruiz & Muttoni, 2007)

☺ Maintains advantages of hand 

calculations (transparent, safe

design with fct = 0, consistent 

detailing)

☺ Compressive strength fc
determined automatically from

strain state

 Limited user-friendliness

 Limited use for serviceability

… no tension stiffening

… no crack width calculation

 No check of deformation

capacity (perfectly plastic 

material)
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Compatible Stress Field Method

CSFM: design process
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1) Definition of geometry, loads and load combinations

a) BIM connections: export data from a global model for the analysis of a detail

b) Standalone application:

Full definition 

in standalone 

user-friendly 

application

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method

CSFM: design process
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2) Reinforcement design

a) Location of reinforcement: definition by user. Several design tools are provided to identify where the 
reinforcement is required (for complex regions):

b) Amount of reinforcement: can be automatically designed for all or part of the reinforcement. Not yet released 
in current version

3) Verification models to check all code requirements

a) Load-bearing capacity

b) Serviceability verifications (deformations, crack width…)

Linear elastic 

stress flow

Topological 

optimization

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method

CSFM verification model: main assumptions

14.11.2024 23

• AStruTie (HanGil)

based on [Kaufmann and Marti, 1998]

Main assumptions:

• Fictitious, rotating, 
stress-free cracks 
(σc1,r=0) without slip

• Average strains

• Equilibrium at cracks:

i. Maximum stresses: 
-σc3,r / σs,r

ii. Concrete tensile 
strength neglected 
except for tension-
stiffening: εm

Suitable for elements with minimum transversal reinforcement. Slender elements without shear reinforcement might 

lead to unconservative results.
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Compatible Stress Field Method

CSFM verification model: concrete
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• AStruTie (HanGil)

▪ Strain limitations of concrete specified by codes 

(explicitly considers the increasing brittleness of 

concrete with strength).

▪ Imposed to the average strain over a characteristic 

crushing band length.

▪ kc discrete values for hand calculations

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method

CSFM verification model: concrete
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• AStruTie (HanGil)

▪ kc (compression softening) automatically computed based 

on the transversal strain state.

▪ Use of fib MC 2010 / SIA 262:213 proposal for shear 

verifications (consistent with considered max. stresses) 

extended for general cases.

▪ Strain limitations of concrete specified by codes 

(explicitly considers the increasing brittleness of 

concrete with strength).

▪ Imposed to the average strain over a characteristic 

crushing band length.
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Compatible Stress Field Method

CSFM verification model: tension stiffening

Stabilized crack pattern

14.11.2024 26

▪ Implementation of 

Tension Chord Model

(TCM) [Alvarez, 1998; 

Marti et al., 1998]

▪ Average crack spacing: 

assumed =0.67

for >cr0.6% → Reinforcement is able to 

carry the cracking load without yielding
0

1
1sr y ctm

cr

f f n
 

 = = + − 
 
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Compatible Stress Field Method

CSFM verification model: tension stiffening

Non-stabilized crack pattern

14.11.2024 27

for <cr0.6% → Reinforcement is NOT able to carry the cracking load without 

yielding. Cracks are controlled by other reinforcement.

▪ Independent cracks are 

assumed + bond model of 

Tension Chord Model. 

▪ Crack localization (size 

effect): stiffness of the 

whole rebar embedded in 

concrete > local stiffness 

near the crack

(considered average strain 

over lavg).
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Compatible Stress Field Method

CSFM verification model: crack width – stabilized crack pattern
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WT4

[Walther, 1967]
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Compatible Stress Field Method

CSFM verification model: crack width – non-stabilized crack pattern

14.11.2024 29

[Zhu et al., 2003]

Assumed independent cracks at SLS Considered for:

a) Regions with ρ<0.6%

b) Cracks triggered by geometric 
discontinuities at low loads

T6

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method

CSFM & IdeaStatiCa Detail implementation: additional information

Theoretical description of CSFM method & experimental validation

• “Computer-aided stress field analysis of discontinuity concrete regions”, J. Mata-Falcón, D. T. Tran, W. Kaufmann, J. Navrátil; 
Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), 641-650, 
London: CRC Press, 2018.

https://www.researchgate.net/profile/Jaime_Mata-Falcon/publication/328419485_Computer-
aided_stress_field_analysis_of_discontinuity_concrete_regions/links/5bcd7f4da6fdcc03c79ad556/Computer-aided-stress-field-
analysis-of-discontinuity-concrete-regions.pdf

• “Compatible Stress Field Design of Structural Concrete: Principles and Validation”, W. Kaufmann, J. Mata-Falcón, M. Weber, D. 
T. Tran, J. Kabelac, M. Konecny; ISBN 978-​3-906916-95-8, ETH Zurich & IDEA StatiCa, 2020. (see additional literature)

Use and installation of Idea StatiCa Detail software:

• Installation of the software: https://www.ideastatica.com/downloads/

Free educational license might be ordered in https://www.ideastatica.com/educational-license/

• Idea StatiCa Resource Center (tutorials, sample projects…): https://www.ideastatica.com/support-center

• Practical workshop will be organised for those students interested
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https://www.researchgate.net/profile/Jaime_Mata-Falcon/publication/328419485_Computer-aided_stress_field_analysis_of_discontinuity_concrete_regions/links/5bcd7f4da6fdcc03c79ad556/Computer-aided-stress-field-analysis-of-discontinuity-concrete-regions.pdf
https://www.ideastatica.com/downloads/
https://www.ideastatica.com/educational-license/
https://www.ideastatica.com/support-center
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Compatible Stress Field Method

Dimensioning/assesment of Discontinuity Regions: Previously existing computer-aided tools

[HanGil, 2017]

Idea StatiCa for specific details

(corbels, piles caps…)

AStrutTie (HanGil) 
(strut-and-tie → fc=? Realistic results?)

[IDEA, 2017]

CAST (Tjhin & Kutchma, 2002)
(strut-and-tie → fc=? Realistic results?)

[Mata-Falcón & Sánchez-Sevilla, 2006]
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Compatible Stress Field Method

Dimensioning/assessment of Discontinuity Regions: Previously existing computer-aided tools
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Stringer-Panel Models (Nielsen, 1971; Blaauwendraad & Hoogenboom, 1996; Marti & Heinzmann, 2012)

[Blauwendraad, 2006]
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Compatible Stress Field Method

CSFM verification model: verification of anchorage length and reinforcement

14.11.2024 34

Bond model used exclusively for 

anchorage length verifications

Tension-stiffening:

▪ Does not affect the

strength of the

reinforcement

▪ Increases the stiffness

▪ Reduces the ductility 

(can reduce the strength 

of the member)

explicit failure 

criteria *Bilinear naked steel input for design. More 

realistic laws for assessment and 

experimental validation.

Bare
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Compatible Stress Field Method

CSFM verification model: tension stiffening

Resultant tension chord behaviour

14.11.2024 35

▪ Fully cracked behaviour 

considered for design.

▪ Uncracked initial stiffness 

can be considered for 

refined verification 

models.
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Compatible Stress Field Method

CSFM verification model: effective area of concrete in tension

→ suitable for numerical implementation and valid for automatic definition of c,eff in any region

Maximum concrete area each  

rebar can activate (concrete at fct)

(illustrated for rebars 3 and 4) Areas used in calculation 
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Compatible Stress Field Method

CSFM verification model: crack width – crack kinematic
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Compatible Stress Field Method

CSFM: practical examples in Idea StatiCa Detail

Deep beam with distributed top load

14.11.2024 38

Problem definition Design of reinforcement

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete
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Compatible Stress Field Method

CSFM: practical examples in Idea StatiCa Detail

Deep beam with distributed top load
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Compatible stress fields Discontinuous stress fields
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Compatible Stress Field Method

CSFM: practical examples in Idea StatiCa Detail

Deep beam with distributed load

14.11.2024 40

Top load: fan mechanism Suspended load: arch mechanism

Arch mechanism requires enough capacity of 

flexural reinforcement; otherwise, the load is 

suspended until top & fan action is generated

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method

CSFM experimental validation

14.11.2024 41

• Direct tension experiments – Alvarez and Marti (1996)

➢ Ultimate limit state

➢ Load deformation behaviour 

➢ Crack width

• Pure bending experiments – Frantz and Breen (1978)

➢ Crack width distribution

• Cantilever shear walls – Bimschas, Hannewald and Dazio (2010, 2013)

➢ Load deformation behaviour under combined loading

➢ Bearing capacity under combined loading

• Beams with low amount of transversal reinforcement – Huber, Huber and Kolleger (2016)

➢ Bearing capacity in shear (failures due to insufficient ductility of the transversal reinforcement)
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Compatible Stress Field Method

CSFM experimental validation

Alvarez and Marti (1996) - experimental setup/specimens

14.11.2024 42

[Avarez and Marti, 1996]

Z1 Z1

Specimen Z1 Z2 Z4 Z8

Long. 

reinforcement

14xØ14

(ρ = 1%)

14xØ14

(ρ = 1%)

14xØ14

(ρ = 1%)

10xØ14

(ρ = 0.7%)

Steel quality 

(ductility class)
High High Normal High

fck_cube (MPa) 50 90 50 50

Loading: pure tension
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Compatible Stress Field Method

CSFM experimental validation

Alvarez and Marti (1996) - ultimate state

14.11.2024 43

[Avarez and Marti, 1996]

Specimen Z1 Z2 Z4 Z8

Experiment

Vexp (kN)

εm,exp (%)

1294

6.7

1295

6.8

1275

0.6

924

6.4

CSFM

Vcalc (kN)

εm,calc (%)

1275

7.0

1282

4.6

1242

0.4

918

6.5

Safety factor

Strength: Vexp/Vcalc

Deform. capacity: εm,exp/εm,calc

1.01

0.96

1.01

1.48

1.03

1.50

1.01

0.98

V: Peak load

εm: Average tensile strain
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Compatible Stress Field Method

CSFM experimental validation

Alvarez and Marti (1996)

Load deformation behaviour

14.11.2024 44

Neglecting tension-stiffening 

overestimates the deformation 

capacity up to 5 times  

(depending on ρ, the ductility of 

the reinforcement…)

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method

CSFM experimental validation

Alvarez and Marti (1996) -

crack width

14.11.2024 45ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Computergestützte Spannungsfelder

CSFM experimental validation

Frantz and Breen (1980) - experimental setup/specimen

14.11.2024 46

• AStruTie (HanGil)

Specimen RS-3

Main 
reinforcement

2xØ15.88
6xØ12.7

Web 
reinforcement

6xØ6

Loading: pure bending

[Frantz and Breen, 1980]

d (mm)

885 mm
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Compatible Stress Field Method

CSFM experimental validation

Frantz and Breen (1980) – crack width
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Compatible Stress Field Method

CSFM experimental validation

Bimschas et al. (2010, 2013) – experimental setup/specimens

14.11.2024 48

VK1: first yielding of 

reinforcement
[Bimschas, 2010]

1370 kN

±V

Specimen VK1 VK3 VK6

Effective height

(m) 
3.30 3.30 4.50

Section depth (m) 1.50 1.50 1.50

Section width (m) 0.35 0.35 0.35

ρsl (%) 0.82 1.23 1.23

ρst (%) 0.08 0.08 0.08

Loading: constant normal force N = -1370kN; quasi-static cyclic

loading with increasing amplitudes in horizontal direction.

Note: CSFM aim at describing the backbone of the cyclic response 

using a monotonic model. Strain penetration into the foundation is 

not considered.

u=8.4%
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Compatible Stress Field Method

CSFM experimental validation

Bimschas et al. (2010, 2013) – peak load

14.11.2024 49

[Bimschas, 2010]

VK1: peak strength VK1: failure

Concrete 

crushing in 

compression

Specimen VK1 VK3 VK6

Experiment*

Vexp (kN)
728 876 647

CSFM

Vcalc(kN)
730 860 650

Vexp/Vcalc 1.00 1.02 1.00

Note: CSFM aims at describing the 

behaviour of the backbone until concrete 

peak horizontal strength is reached, (≠ to

loss of vertical bearing capacity).

*mean peak horizontal load of North and 

South directions.
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Compatible Stress Field Method

CSFM experimental validation

Bimschas et al. (2010, 2013) – load deformation behaviour

14.11.2024 50

Failure mode: concrete crushing in compression. Failure is considered when the strain limit criteria specified in codes for sectional 

analysis is reached on average over the crushing band length. 
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Compatible Stress Field Method

CSFM experimental validation

Bimschas et al. (2010, 2013) – stress fields specimen VK1

14.11.2024 51

Note: Refined analysis considers the initial uncracked stiffness, as well as the actual stress-strain relationship of the 

reinforcement. Moreover, no concrete strain limitation is considered. 

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Compatible Stress Field Method
CSFM experimental validation: Bimschas et al. (2010, 2013) – load deformation behaviour
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[%]

sr/ft

c3r/(fc·kc)

sr>fy
1370 kN

250 kN

84º

1370 kN

500 kN

80º

1370 kN

750 kN

79º

sr<0
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Compatible Stress Field Method

CSFM experimental validation

Huber et al. (2016) – experimental setup/specimens
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Øw
(mm)

fy
(MPa)

ft
(MPa)

u
(%)

4 653 710 4.9

6 569 658 3.1

12 552 654 3.4

Specimen R1000m35 R1000m60 R500m352 R500m351

Section depth 1.00 m 1.00 m 0.50 m 0.50 m

Section width 0.30 m 0.30 m 0.15 m 0.15 m

w
0.094 % 0.094 % 0.084 % 0.094 %

Øw
Ø6 Ø12 Ø4 Ø6

fc 29.6 MPa 60.9 MPa 35.9 MPa 37.9 MPa
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Compatible Stress Field Method

CSFM experimental validation

Huber et al. (2016) – ultimate load
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• Neglecting tension 
stiffening leads to 
unsafe load predictions 
and does not capture 
the real failure mode 
(stirrup rupture).

• Higher impact of strain 
localization in real size 
elements → use of 
existing experimental 
databases could 
underestimate the 
impact of these failures.

Cold-formed steel with same ft & fy → less ductile & lower 

predicted load (≈10%) than standard bilinear steel law.

CSFM CSFM

CSFM

CSFM
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Compatible Stress Field Method

CSFM experimental validation

Huber et al. (2016) – stress fields specimen R1000m35
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776 kN

q=40.5º

937 kNStirrups 
yielding

q=36.5º

z=20‰ 0‰

srz=600 MPa<ft

1=23‰ → kc=0.41

c3r=12 MPa

c3r/(fc·kc)=1.00

z=5.4‰

srz=638 MPa=ft

1=6.4‰ → kc=0.64

c3r=7.7 MPa

c3r/(fc·kc)=0.42

*Results at the most restrictive 

concrete and steel finite elements 

(minimum kc & maximum srz)

CSFM (No tens.-stiff.)

CSFM

[%]

sr/ft

c3r/(fc·kc)

sr>fy
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