2 In-plane loading

2.6 Numerical modelling

Learning objectives

Within this chapter, the students are able to:

- **EXP** select the most suitable numerical model for each structural concrete problem, clearly differentiating design and assessment-oriented approaches.
	- o recognise the higher probability of making mistakes when increasing modelling complexity and the necessity to cross-check numerical models' results with simple handmade analysis.
	- \circ identify how to discretise a structural member with a combination of spine, planar, multilayer, and three-dimensional elements.
	- o discuss the workflow of selected numerical models.
- **•** recall the main assumptions of the Compatible Stress Field Method, its range of applicability and the similitudes and differences to already studied equilibrium and compression field approaches.

Levels of Approximation (LoA)

- From simple analyses (handmade) to nonlinear calculations (specific software)
- With every new LoA the knowledge on the behavior of the structure increases
- While a low LoA tends to be conservative, a higher LoA does not always predict a higher load (hidden brittle mechanisms can be captured with high LoA)
- More complex models also increase the probability of making a modelling mistake \rightarrow engineer should always cross check with simple hand calculations!

Linear vs. non-linear finite element analysis

ε

No

Yes

Modelling of structures

- 1D elements (spine)
- 2D elements
- 2D multilayer elements
- 3D elements

Modelling of structures

- 1D elements (spine)
- 2D elements
- 2D multilayer elements
- 3D elements

Modelling of structures

- 1D elements (spine)
- 2D elements
- 2D multilayer elements
- 3D elements

Modelling of structures

- 1D elements (spine)
- 2D elements
- 2D multilayer elements
- 3D elements

Modelling of structures

- 1D elements (spine)
- 2D elements
- 2D multilayer elements
- 3D elements

Compatible Stress Field Method (CSFM)

- Assessment task

- . Concrete geometry, loads, and reinforcement are known
- . Non-linear finite element analysis (NLFEA) $\rightarrow \sigma \xleftarrow{\sigma(\varepsilon)} \varepsilon$ relationship

constitutive

- Compatible stress fields Structures with only in-plane loading
	- Reinforcement and concrete are modelled separately Suitable for Discontinuity Regions
	- Tension stiffening according to TCM & POM (1D)
- Time devoted to analysis: medium
- Commercial software available → Idea StatiCa Detail
- Increasingly used in practice for **assessment** and **design**

[Thoma, 2018]

Cracked Membrane Model Usermat (CMM-Usermat)

- Assessment task

. Concrete geometry, loads, and reinforcement are known

constitutive relationship

. Non-linear finite element analysis (NLFEA) \rightarrow Compatible stress fields Multilayer shell element $\sigma \xleftarrow{\sigma(\epsilon)} \epsilon$

Reinforcement and concrete are modelled as a composite Tension stiffening according to TCM (2D)

- Time devoted to analysis: high
- Used at ETHZ for research and expertise

[[]Cervenka, 2020]

Full non-linear finite element analyses

- Assessment task

. Concrete geometry, loads, and reinforcement are known

constitutive relationship

- . Non-linear finite element analysis (NLFEA) \rightarrow Many available models (usually very complex) Tensile strength usually considered for equilibrium Not compliant with structural design codes $\sigma \xleftarrow{\sigma(\epsilon)} \epsilon$
- Time devoted to analysis: very high
- Many commercial software available (Ansys, Abaqus, Atena, Diana…)
- Not a design tool. Rarely used in practice for assessment (skilled users)

Annex

Cracked Membrane Model Usermat (CMM-Usermat)

Fig. 3. Multilayer shell element - Cracked Membrane Model Usermat input parameters.

[Kaufmann, 1998]

[Thoma, 2018]

Cracked Membrane Model Usermat (CMM-Usermat)

Comparison between experiment and CMM-Usermat calculation

- Reinforced concrete shear wall: IWT2 (from Leonhardt and Walther) . Indirectly supported plate with indirect load introduction

- Results
	- . Measured and calculated load-deformation curves agree well
	- . Same failure mechanism at exactly the same location
	- . Crack pattern at failure are also sufficiently similar

[Thoma, 2018]

Compatible Stress Field Method (CSFM) - Implemented in commercial software Idea StatiCa Detail Continuous stress fields = Computer-aided stress fields

Scope

- Simple method for efficient, code-compliant design and assessment of discontinuity concrete regions
- Including serviceability and deformation capacity verifications
- Direct link to conventional RC design: standard material properties, concrete tensile strength totally neglected for equilibrium (only its influence to the stiffness is accounted for)

Inspirations

- EPSF FE-implementation (strain compatibility, automatic determination of concrete reduction factor from strain state)
- Tension Chord Model TCM and Cracked Membrane Model CMM (tension stiffening, ductility and serviceability checks)

Development / Credits

Calculate vesterday's estimates

This project has received partial funding from Eurostars-2 joint programme, with co-funding from the European Union Horizon 2020 research and innovation programme

Dimensioning/assesment of Discontinuity Regions: Previously existing computer-aided tools

EPSF elastic plastic stress fields (Fernández Ruiz & Muttoni, 2007)

[Muttoni & Fernandez Ruiz, 2007]

- \mathbf{M} state ☺ Compressive strength *f^c* determined automatically from strain state
- Limited user-friendliness
- Limited use for serviceability
	- … no tension stiffening
	- … no crack width calculation

[Mata-Falcón, 2015]

 \odot No check of deformation capacity (perfectly plastic material)

CSFM: design process

- **1) Definition of geometry, loads and load combinations**
	- a) BIM connections: export data from a global model for the analysis of a detail
	- b) Standalone application:

Full definition in standalone user-friendly application

CSFM: design process

2) Reinforcement design

a) Location of reinforcement: definition by user. Several design tools are provided to identify where the reinforcement is required (for complex regions):

- b) Amount of reinforcement: can be automatically designed for all or part of the reinforcement. Not yet released in current version
- **3) Verification models** to check all code requirements
	- a) Load-bearing capacity
	- b) Serviceability verifications (deformations, crack width…)

CSFM verification model: main assumptions

based on [Kaufmann and Marti, 1998]

- Fictitious, rotating, stress-free cracks (σ*c1,r*=0) without slip
- Average strains
- Equilibrium at cracks:
	- i. Maximum stresses: -σ*c3,r /* σ*s,r*
	- ii. Concrete tensile strength neglected except for tensionstiffening: ε*^m*

Suitable for elements with minimum transversal reinforcement. Slender elements without shear reinforcement might lead to unconservative results.

e volues for bond colou \blacksquare k_c discrete values for hand calculations

- **EXTERNITHERY Strain limitations of concrete specified by codes** (explicitly considers the increasing brittleness of concrete with strength).
- **.** Imposed to the average strain over a characteristic crushing band length.

- **EXTERNITHERY Strain limitations of concrete specified by codes** (explicitly considers the increasing brittleness of concrete with strength).
- Imposed to the average strain over a characteristic crushing band length.
- \textbf{I} \textit{k}_{c} (compression softening) automatically computed based on the transversal strain state.
- Use of *fib* MC 2010 / SIA 262:213 proposal for shear verifications (consistent with considered max. stresses) extended for general cases.

CSFM verification model: tension stiffening

Stabilized crack pattern

CSFM verification model: tension stiffening

Non-stabilized crack pattern

[Walther, 1967]

CSFM verification model: crack width – non-stabilized crack pattern

CSFM & IdeaStatiCa Detail implementation: additional information

Theoretical description of CSFM method & experimental validation

• "Computer-aided stress field analysis of discontinuity concrete regions", J. Mata-Falcón, D. T. Tran, W. Kaufmann, J. Navrátil; Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), 641-650, London: CRC Press, 2018.

https://www.researchgate.net/profile/Jaime_Mata-Falcon/publication/328419485_Computeraided stress field analysis of discontinuity concrete regions/links/5bcd7f4da6fdcc03c79ad556/Computer-aided-stress-fieldanalysis-of-discontinuity-concrete-regions.pdf

• "Compatible Stress Field Design of Structural Concrete: Principles and Validation", W. Kaufmann, J. Mata-Falcón, M. Weber, D. T. Tran, J. Kabelac, M. Konecny; ISBN 978-3-906916-95-8, ETH Zurich & IDEA StatiCa, 2020. (see additional literature)

Use and installation of Idea StatiCa Detail software:

- Installation of the software:<https://www.ideastatica.com/downloads/> Free educational license might be ordered in<https://www.ideastatica.com/educational-license/>
- Idea StatiCa Resource Center (tutorials, sample projects…): <https://www.ideastatica.com/support-center>
- Practical workshop will be organised for those students interested

Annex

Dimensioning/assesment of Discontinuity Regions: Previously existing computer-aided tools

14.11.2024 **ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete** 32

Dimensioning/assessment of Discontinuity Regions: Previously existing computer-aided tools

Stringer-Panel Models (Nielsen, 1971; Blaauwendraad & Hoogenboom, 1996; Marti & Heinzmann, 2012)

14.11.2024 33 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete

CSFM verification model: verification of anchorage length and reinforcement

CSFM verification model: tension stiffening

Resultant tension chord behaviour

- **E** Fully cracked behaviour considered for design.
- Uncracked initial stiffness can be considered for refined verification models.

CSFM verification model: effective area of concrete in tension

 \rightarrow suitable for numerical implementation and valid for automatic definition of $\rho_{c,eff}$ in any region

14.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 36

CSFM: practical examples in Idea StatiCa Detail

Deep beam with distributed top load

CSFM: practical examples in Idea StatiCa Detail

Deep beam with distributed top load

Arch mechanism requires enough capacity of flexural reinforcement; otherwise, the load is suspended until top & fan action is generated

CSFM: practical examples in Idea StatiCa Detail

Deep beam with distributed load

CSFM experimental validation

- Direct tension experiments Alvarez and Marti (1996)
	- ➢ Ultimate limit state
	- ➢ Load deformation behaviour
	- ➢ Crack width
- Pure bending experiments Frantz and Breen (1978)
	- \triangleright Crack width distribution
- Cantilever shear walls Bimschas, Hannewald and Dazio (2010, 2013)
	- ➢ Load deformation behaviour under combined loading
	- ➢ Bearing capacity under combined loading
- Beams with low amount of transversal reinforcement Huber, Huber and Kolleger (2016)
	- ➢ Bearing capacity in shear (failures due to insufficient ductility of the transversal reinforcement)

CSFM experimental validation

Alvarez and Marti (1996) - experimental setup/specimens

Loading: pure tension

[Avarez and Marti, 1996]

CSFM experimental validation

Alvarez and Marti (1996) - ultimate state

[Avarez and Marti, 1996]

V: Peak load

ε*m*: Average tensile strain

14.11.2024 44 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete

14.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 45

Computergestützte Spannungsfelder

CSFM experimental validation

Frantz and Breen (1980) – crack width

 $-$ Experiment - average --- CSFM - max $(\lambda=1.0)$ — CSFM - $(\lambda=0.67)$ ------ CSFM- min $(\lambda=0.5)$

CSFM experimental validation

Bimschas et al. (2010, 2013) – experimental setup/specimens

Loading: constant normal force *N* = -1370kN; quasi-static cyclic loading with increasing amplitudes in horizontal direction.

Note: CSFM aim at describing the backbone of the cyclic response using a monotonic model. Strain penetration into the foundation is not considered.

VK1: first yielding of reinforcement [Bimschas, 2010]

CSFM experimental validation

Bimschas et al. (2010, 2013) – peak load

*mean peak horizontal load of North and South directions.

Note: CSFM aims at describing the behaviour of the backbone until concrete peak horizontal strength is reached, (≠ to loss of vertical bearing capacity).

[Bimschas, 2010]

Bimschas et al. (2010, 2013) – load deformation behaviour VK1 VK3 VK₆ 1000 1000 1000 800 800 800 600 600 600 ${\rm V}$ [KN] 400 400 400 Experimental data """CSFM: no tension stiffening 200 200 200 $---C$ SFM $0<$ $\overline{0}$ ()< 60 60 θ 20 40 Ω 20 40 20 40 60 Ω u_{top} [mm] $[mm]$ $[mm]$ u_{top} u_{top}

● Failure mode: concrete crushing in compression. Failure is considered when the strain limit criteria specified in codes for sectional analysis is reached on average over the crushing band length.

CSFM experimental validation

14.11.2024 50 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete

CSFM experimental validation

Bimschas et al. (2010, 2013) – stress fields specimen VK1

Note: Refined analysis considers the initial uncracked stiffness, as well as the actual stress-strain relationship of the reinforcement. Moreover, no concrete strain limitation is considered.

14.11.2024 51 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete

CSFM experimental validation

Huber et al. (2016) – experimental setup/specimens

