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2.5 Compatibility and deformation capacity

This chapter examines the load-deformation behaviour of reinforced concrete membrane elements using

the example of orthogonally reinforced membrane elements subjected to uniform in-plane loading. In

particular, the Cracked Membrane Model (CMM) developed at ETH Zurich will be introduced. This

mechanically consistent model enables a realistic investigation of the load-deformation behaviour.

The load-bearing and deformation behaviour of reinforced concrete membrane elements is generally quite

complex. First, the basic features of the behaviour of membrane elements (not predominantly loaded in

compression) are described. Afterwards, possible calculation models and solution methods for the

behaviour of orthogonally reinforced membrane elements in the cracked state are discussed.
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Within this chapter, the students are able to:

▪ describe how using an effective compressive strength dependent on the transverse strain state 

modifies the boundaries of the membrane yield conditions.

▪ discuss the differences and similitudes between various compression field models which can be used 

to investigate the load-deformation behaviour of reinforced concrete membrane elements.

▪ formulate the main assumptions of the Cracked Membrane Model with stress-free cracks, including 

how to model tension stiffening for bidirectional reinforcement using the Tension Chord Model.
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2.5 Compatibility and deformation capacity

A) Influence of strains on the compressive strength

and thus on the yield conditions
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2.5 Compatibility and deformation capacity

A) Influence of strains on the compressive strength

and thus on the yield conditions



On this and the following two slides (from Kaufmann (1998)) the influence of a strain state dependent

compressive strength on the resistance of orthogonally reinforced membrane elements is investigated.

Note that we also referred to this effect as compression softening when presenting this topic for the

particular case of walls and beams.

The consideration of a compressive strength dependent on the strain state requires carrying out load-

deformation analyses (see following section). However, the influence can be analytically approximated in

some regions of the yield surface with a simplified estimation of the strain state in the region, similarly as

already presented in the chapter “Compatibility and deformation capacity of walls and beams”. Detailed

investigations with a refined model (Cracked Membrane Model CMM) that will be later presented in this

chapter, confirm the validity of this simplification.

This slide shows the yield condition of an orthogonally reinforced membrane element, which was derived

just from equilibrium considerations in the last chapter considering a constant compressive strength (fc).

However, it was not discussed what is the “right” value of the effective compressive strength to be

considered. The area in which failure occurs due to yielding of the two reinforcements (Regime 1) is

triangular (bounded by the yellow line).
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The figure on the left shows the yield condition for orthogonally reinforced membrane elements with

constant compressive strength, shown in the last slide, but particularised for an effective compressive

strength fc = fce = kc·fc’ = 0.55·fc’ , where fc’ is the cylindrical compressive strength of concrete, which was

also referred to as fc,cyl in the chapter of “Compatibility and deformation capacity of walls and beams”. The

chosen effective compressive strength corresponds to the compressive strength typically considered for

shear verifications in SIA 262 (i.e. kc = 0.55).

The figure in the middle shows calculations with the CMM (tedious, each point of the diagram corresponds

to a full nonlinear load-deformation analysis). The figure on the right shows the approximation presented

on the next page, based on a simplified estimation of the strain field. This fits well with the more precise

calculations.

It is important to note that a compressive strength dependent on the strain state has no influence on the

load-bearing resistance in Regime 1, since the resistance in this Regime is uniquely determined by the

yielding of the two reinforcements. However, it does influence the boundaries of Regime 1 and the

resistance in Regimes 2, 3, etc.

The area in which failure occurs due to yielding of the two reinforcements (Regime 1) is triangular when

considering a constant compressive strength (left graph). With a compressive strength dependent on the

strain state (lower compressive strength at large transverse tensile strains), early concrete failure occurs

with very flat (or steep) stress field inclinations. Since the transverse strains are larger with such

inclinations, the area of Regime 1 is therefore narrower in this case.

The transition point between Regimes 1, 2 and 3 has the same effective compressive strength in all three

cases (fc = fce = kc·fc’ = 0.55·fc’). This effective compressive strength can be easily derived from the

compression softening proposed by Kaufmann (1998) and a simplified estimation of the strain field, as

shown in the following slide.
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Boundary of Regime 1: concrete crushes, stronger 
reinforcement at onset of yielding → e1 can be approximated

"Exact" calculation with
CMM approach [MPa]:

Approximation with simplified e1 

along boundary Y1 (see next slide)
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On the right side, the yield conditions for ideally plastic behaviour and constant concrete compressive

strength 0.55·fc’ is shown in the top figure. The failure conditions considering the deformation-dependency

of the concrete compressive strength are shown below it (same figures as on the previous slide).

The approximated approach (bottom figures) is based on the assumptions that the concrete compression

is 𝜀3 = −𝜀cu = −0.002 at the boundary of Regime 1 and the stronger reinforcement just reaches the yield

point, in which tension stiffening is accounted for with a simplified factor of 0.8 (𝜀 sm = 0.8·fs /Es =

0.8·500/200’000 = 0.002).

Thus, the principal tensile strain 𝜀1 follows at the boundary between Regimes 1 and 2 with 𝜀3 = −𝜀cu and 𝜀x

= 𝜀sm from the relationship 𝜀1 = 𝜀x + (𝜀x − 𝜀3)cot2𝛼, since the compression field inclination 𝛼 is known. At the

Regime boundary, both reinforcements just yield when the concrete crushes:

By inserting this into the following equation for the effective concrete compressive strength, the equations

presented in the slide are obtained:

For the Regime 1 boundary these equations agree very well (since the assumptions made apply to the

strains at the Regime 1 boundary). For areas further away, the approximation is still generally sufficient.

Derivation of kc = 0.55 with approximated approach (transition point Regimes 1, 2 and 3):

𝛼 = 45º; 𝜀3 = −0.002; 𝜀x = 0.002

𝜀1 = 𝜀x + (𝜀x − 𝜀3)cot2𝛼 = 0.006
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Influence on yield conditions

The yield surface can be modified by taking into account the 

dependence of the concrete compressive strength on the 

transverse strains.

→ Area of Regime 1 is reduced (affected: zones with very flat / 

steep inclinations)

→ Calculation with Cracked Membrane Model (CMM, middle 

graph) is tedious

→ Approximate solution (bottom graphs):
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(unchanged)



fc=0.55fc’

fc=f(e1)

CMM

fc=f(e1)

e1 simpl.

30 =  MPacf

2cot ( ) ( )sx sx x sz sz za f n a f n = − −

c
c c

f
k f


 =

+  e

2/3

1

 
( )

0.4 30

cfc
c c c c c c

f
k f f k f k

 =−


  = = → = ⎯⎯⎯⎯⎯→ =
+  e

2/3
30 MPa2/3 1/3

1

( )
1.72( ) 1.72( ) 0.55 (characteristic value in SIA 262) 

0.4 30

Membrane elements – Effective compressive strength

15.11.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 6

Influence on yield conditions

The yield surface can be modified by taking into account the 

dependence of the concrete compressive strength on the 

transverse strains.

→ Area of Regime 1 is reduced (affected: zones with very flat / 

steep inclinations)

→ Calculation with Cracked Membrane Model (CMM, middle 

graph) is tedious

→ Approximate solution (bottom graphs):
2/3

1
2

1

2/3
2 2

2

2/3
2 2

3

( )

0.4 30

: ( )( )

( )25 29
: ( ) 2.0

3 ( ) 12

( )25 29
: ( ) 2.0

3 ( ) 12


 =

+ e

 =  −   − 

  
 =  −  + − 

 −   

 
 =  −  + −

 − 

mit dem Ansatz   (

u )

1998):

 ( nveränder t

c
c c

xz x sx x z sz z

c
xz z sz z

z sz z

c
xz x sdx x

x sx x

f
k f

Y f f

f
Y f

f

f
Y f

f

2

2 2/3

4

25
: ( )

29

 
 
  

 
 =  

 
xz cY f

0.55 

 − x sx x

cf

f
1.5

00.55 

 − 

c

z sz zf

f

1.5

0

0.75

0.55





xz

cf
0.50

0.55 

 − x sx x

cf

f 1.50

cot 2.0 =0.55 

 − z sz z

cf

f

1.5

cot 0.5 =

4

2

3

1

0.55 

 − x sx x

cf

f
1.5

00.55 

 − z sz z

cf

f

1.5

0

0.70

0.55





xz

cf
0.50

0.55 

 − x sx x

cf

f 1.50

0.55 

 − z sz z

cf

f

1.5

szr szf =

szr tzf =

sxr txf =

sxr sxf =

0.55 

 − x sx x

cf

f
1.5

00.55 

 − 

c

z sz zf

f

1.5
0

0.70

0.55





xz

cf

0.50

0.55

 − 



x sx x

c

f

f

1.50

0.55

 − 



z sz z

c

f

f

sxr sxf =

1.5

szr szf =

43

21

Boundary Regime 1: concrete crushes, stronger reinforcement at 
onset of yielding → e1 can be determined

assuming:

(unchanged)



fc=0.55fc’

fc=f(e1)

CMM

fc=f(e1)

e1 simpl.

30 =  MPacf



The equations shown on the previous page apply to the relationship for the effective concrete compressive

strength according to Kaufmann (1998).

Following the same procedure, the approximate solution can also be derived for the effective concrete

compressive strength according to the standard SIA 262 (see slide). These equations can also be used for

a fully code-compliant design in Regimes 2, 3, and 4.

Note that the nomenclature of this slide has been changed with respect to the previous ones in order to be

more consistent with the original formulation contained in SIA 262. In this case, fc denotes the reference

cylindrical compressive strength, which in the previous slides was referred to as fc’ or fc,cyl.

Derivation of kc in the transition point Regimes 1, 2, and 3:

𝛼 = 45º; 𝜀3 = −0.002; 𝜀x = 0.002

𝜀1 = 𝜀x + (𝜀x − 𝜀3)cot2𝛼 = 0.006
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Influence on yield conditions

The yield surface can be modified by taking into account the 

dependence of the concrete compressive strength on the 

transverse strains.
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Membrane elements - Load-deformation behaviour
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General

Experiment VN2

V = 360 kN

r  30°

Experiment VN2

V = 545 kN

r  17…25°

Experiment VN2

V = 548 kN

(failure)

Before cracking, the behaviour differs only slightly from that of a homogeneous concrete membrane

element, with the exception of residual stresses caused by the shrinkage of the concrete, which is

restrained by the reinforcement. If the principal tensile stress in the concrete exceeds the tensile strength,

cracks form approximately perpendicular to the principal tensile stress direction. Crack formation is

associated with the redistribution of internal forces, which generally leads to a change in the principal

stress directions immediately after crack formation. If sufficient minimum reinforcement is present, the

reinforcement is initially elastically stressed after crack formation. In this case, the principal stress

directions remain approximately constant after cracking, until the membrane element fails due to the

crushing of the concrete (over-reinforced elements, should be avoided) or the stresses in one of the two

reinforcements (i.e. longitudinal or transverse) exceed the yield strength.

Since the stiffness of the reinforcement drops considerably after the onset of yielding, further

redistributions of forces take place. As the load increases, new cracks appear which, in comparison with

the previous cracks, run closer to the direction of the non-yielding reinforcement. When the load is further

increased, the membrane element finally fails due to the crushing of the concrete or due to the yielding of

the previously elastic reinforcement. In the latter case, both longitudinal and transverse reinforcements

yield during failure, resulting in a very ductile failure behaviour. However, if the concrete crushes before

both reinforcements yield or if the weaker reinforcement ruptures already during crack formation (or before

the stronger reinforcement yields), a more brittle behaviour must be expected.

The figure illustrates the behaviour using the cracks in a beam under "pure shear" (constant shear force,

moment equal to zero at midspan): The cracks in the web become flatter with increasing load.

Membrane elements - Load-deformation behaviour
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General

Experiment MVN1

V = 210 kN

r  35...55°

Experiment MVN1

V = 510 kN

r  25°

Experiment MVN1

V = 540 kN

(failure)

During the loading process, generally, cracks with different directions form. The cracks that do not run in

the principal concrete stress direction must obviously transfer shear stresses, which theoretically could

lead to failure by sliding along the cracks. However, tests have shown that (at least in conventional

concrete) the aggregate interlock is usually sufficient to transmit the shear stresses, such that sliding

along cracks only occurs in exceptional cases.

The figure illustrates the behaviour using the cracks in a beam under bending and transverse force: The

cracks in the web become flatter with increasing load.

Membrane elements - Load-deformation behaviour
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General

Experiment MVN1
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Experiment MVN1

V = 540 kN

(failure)



The figures on the right show the behaviour of an orthogonally reinforced membrane element under

monotonously increasing, uniform shear stress (without normal membrane (in-plane) forces). The element

is heavily reinforced in the x-direction, whereas in the z-direction, it has only weak reinforcement. The

calculations were performed with the Cracked Membrane Model (CMM).

It can be seen that the principal stress direction changes abruptly at crack formation (principal stress

direction becomes "flatter", i.e. it rotates in the direction of the stronger reinforcement). It then remains

approximately constant until the weaker reinforcement yields. After the start of yielding of the weaker

reinforcement, the principal stress direction becomes significantly flatter again, until in this example, the

failure occurs due to crushing of the concrete.

The influence of the tension stiffening effect of the concrete between the cracks can also be clearly seen

(without tension stiffening: dashed line). Since the concrete compressive strength depends on the strains

(which decrease due to tension stiffening), the tension stiffening also increases the load capacity (if the

failure does not occur due to the yielding of both reinforcements, i.e. in Regime 1, where the ultimate load

is independent of the concrete strength).

Additional remark:

With very flat compression field inclinations (weak reinforcement in z-direction), large strains occur, in

particular also in the vertical direction. Since the weak z-reinforcement has a relatively stiff bond (thin

bars), in such cases, the failure often occurs due to rupture of the z-reinforcement. It is also possible that a

failure may occur due to the failure of aggregate interlock in the steeper cracks from earlier load stages

(which must transmit large forces but have wide crack openings).
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Reinforced concrete membrane element under monotonous load 

increase

1. Uncracked behaviour: Like homogeneous concrete membrane element 

(slight differences due to restraint shrinkage etc.)

2. Initial cracking approximately perpendicular to the principal tensile stress 

direction

3. Crack formation → Redistribution of internal forces → Change of 

principal stress directions immediately after crack formation

4. Cracked-elastic behaviour: Principal stress directions ± constant as long 

as both reinforcements remain elastic 

5. Yielding of a reinforcement 

→ Decrease in stiffness → Further redistribution of internal forces 

→ New cracks (closer to the direction of the non-yielding reinforcement)

6. Failure due to crushing of the concrete or yielding of the other 

reinforcement (possibly reinforcement ruptures or aggregate interlock 

fails)

without

bond

z-reinf.

yields

6

0
0 [‰]xz

20

6

0
1

cot  [-]r
2

concrete

crushing

z-reinf.

yields

with bond

[MPa]
xz

[MPa]
xz

concrete crushing
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Test facilities for uniformly stressed elements 

Shear Panel Tester Shell Element Tester Large Universal Shell Element Tester 

University of Toronto 1979 University of Toronto 1984 / 2009 ETH Zürich 2017

The behaviour of reinforced concrete membrane elements under uniform membrane (in-plane) loading

can be investigated in special test facilities. This slide shows three test facilities with which large-scale

elements of reinforced concrete membrane elements can be tested under uniform loading:

- Shear Panel Tester of the University of Toronto

developed by Prof. Vecchio, 1979

- Shell Element Tester of the University of Toronto

developed by Prof. Marti + Prof. Collins 1984

Upgrade to servo hydraulics by Prof. Collins + Prof. Bentz 2009

- Large Universal Shell Element Tester (LUSET) from ETH Zurich

developed by Prof. Kaufmann 2017

It is no coincidence that two of the facilities are located at the University of Toronto, one of the world's 

leading universities in reinforced concrete design. Like ETH Zurich, it has excellent facilities for large-scale 

experiments and a long tradition of carrying them out. A fourth facility is located at the University of 

Houston ("Universal Element Tester", essentially a copy of the Shell Element Tester with slightly smaller 

dimensions, elements approx. 1‘397x1‘397x400 mm). 

Today these are the only test facilities in the world with which large-scale elements of reinforced concrete

membrane elements can be tested under uniform membrane loading (a few years ago there was another

facility for membrane loading in Japan (Kajima Corp.), but it no longer exists).

Membrane elements - Load-deformation behaviour
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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General loading (8 stress resultants)

Applied loads in-plane and out-of-plane of general direction, i.e. 

perpendicular and parallel to element edge

→ principal direction of applied loads variable

→ reinforcing bars parallel to element edges

Element size 2,000-2,000-350 mm

In the Large Universal Shell Element Tester (LUSET), elements with dimensions of 2,000x2,000x350 mm

can be tested under general shell loading (8 stress resultant elements): membrane (in-plane) forces { nx,

nz, nxz }, bending and twisting moments { mx, mz, mxz }, and transverse (out-of-plane) shear forces { vx, vz }).

In contrast to the Shell Element Tester in Toronto, the principal direction of the applied membrane stress

is variable. LUSET thus combines the advantages of the Shear Panel Tester (membrane stress with

variable principal direction) and the Shell Element Tester (general stress due to 8 stress resultants, large

dimensions of the elements).

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Element size 2,000-2,000-350 mm
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Equilibrium of forces [kN/m]

Equilibrium in equivalent stresses [MPa]

(with ρ𝑥σ𝑠𝑥, ρ𝑧σ𝑠𝑧 = stresses in the reinforcement,

Τρ𝑥 = 𝑎𝑠𝑥 ℎ, Τρ𝑧 = 𝑎𝑠𝑧 ℎ)

Membrane elements - Load-deformation behaviour

External loads are in equilibrium with reinforced concrete = concrete + reinforcing steel
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Repetition from Stahlbeton I:

The applied load { nx, nz, nxz } = h· {σx, σz, τxz } corresponds to the sum of the forces in the concrete { nx, nz,

nxz }c = h· {σxc, σzc, τxzc } and in the reinforcement { nxs, nzs, 0 } = h· {ρx σsx, ρz σz, 0}, where nxzs = 0 applies

to orthogonal reinforcement (only forces in bar direction).
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(with ρ𝑥σ𝑠𝑥, ρ𝑧σ𝑠𝑧 = stresses in the reinforcement,

ρ𝑥 = 𝑎𝑠𝑥 ℎΤ , ρ𝑧 = 𝑎𝑠𝑧 ℎΤ )
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Equilibrium of forces [kN/m]
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Membrane elements - Load-deformation behaviour

Compatibility - Mohr’s strain circle
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Each compatible strain state can be described by 3 non-collinear strains (3 unknowns).

Membrane elements - Load-deformation behaviour

Compatibility - Mohr’s strain circle
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Strains in cracked membrane elements

Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

τ

σ3 1




Xc

Qc

ε

Strains in concrete 

between two cracks

{e}(c): e
(c)  

(locally equal, but  is 

slightly variable 

between two cracks)

concrete stresses:
γ/2

concrete

stresses

Q(c)

1(c)

3(c)
Z(c)

X(c)
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e
(c)  

The total strains in the cracked-elastic state II are composed of the strains in the concrete between the

cracks and the strains due to crack kinematics. The strains of the concrete can be determined from the

concrete stresses using the material constitutive relationship.

Strains in cracked membrane elements

Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 
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e
(c)  



ε

γ/2
Concrete strains {e}(c) between two 

cracks (local variation along u):

Q(c)

1(c)

3(c)

Strains in cracked membrane elements

Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

Z(c)

X(c)
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Strains in concrete 

between two cracks

{e}(c): e
(c)  

(locally equal, but  is 

slightly variable 

between two cracks)
e

(c)  

The strains in the concrete vary locally between the cracks along the n-axis (along the t-axis they are

constant). Since this variation is very small, the strains of the concrete are often averaged over the crack

spacing. Thus, a computationally less complex solution method can be used.

ε

γ/2
Concrete strains {e}(c) between two 

cracks (local variation along u):

Q(c)

1(c)

3(c)

Strains in cracked membrane elements

Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

Z(c)

X(c)
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Strains in concrete 

between two cracks

{e}(c): e
(c)  

(locally equal, but  is 

slightly variable 

between two cracks)
e

(c)  



Strains in cracked membrane elements

ε

Strains due to crack 

kinematics {e}(r) :

e
(r)  r

(except for r = p/2)

Q(r) Z(r)

X(r)

1(r)3(r)

e(r)

N

e(r)

Crack kinematics (parallel set of cracks):

sr crack spacing
r crack inclination
n, t coordinates  ⊥ and // to the crack

|d|/sr

γ/2

T
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

r

r

dt

d

dn

r

The average strains due to crack kinematics are determined from the crack edge displacements dn and dt,

by "smearing" them over the crack spacing sr .

Strains in cracked membrane elements

ε

Strains due to crack 

kinematics {e}(r) :

e
(r)  r

(except for r = p/2)

Q(r) Z(r)

X(r)

1(r)3(r)

e(r)

N

e(r)

Crack kinematics (parallel set of cracks):

sr crack spacing
r crack inclination
n, t coordinates  ⊥ and // to the crack

|d|/sr

γ/2

T
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

r

r

dt

d

dn

r



dt

d

dn

r

ε

Strains due to crack 

kinematics {e}(r) :

e
(r)  r

(except for r = p/2)

Contribution to total strain:

• {e}(c) (average along sr) 

• {e}(r) (smeared along sr) 

Strains in concrete 

between two cracks {e}(c): 

e
(c)   (local variation of

 neglected)

Z(c)

X(c)

Z(r)

X(r)

γ/2

Strains in cracked membrane elements
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

The strains in the concrete between the cracks are typically much smaller than the average strains due to

crack kinematics.

dt

d

dn

r

ε

Strains due to crack 

kinematics {e}(r) :

e
(r)  r

(except for r = p/2)

Contribution to total strain:

• {e}(c) (average along sr) 

• {e}(r) (smeared along sr) 

Strains in concrete 

between two cracks {e}(c): 

e
(c)   (local variation of

 neglected)

Z(c)

X(c)

Z(r)

X(r)

γ/2

Strains in cracked membrane elements
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 



dt

d

dn

r

1

Total strains {e}: 

{e} = {e}(c) + {e}(r)

e  e
(c)  e

(r)

e
(c) = e

(r) if r = 

and r = p/2

(local variation 

neglected)

ε

Z

X

3

γ/2

e e

e
(r)

e
(c)

cracks parallel to 

and opening at r = p/2: 

e = 

Strains in cracked membrane elements

Contribution to total strain:

• {e}(c) (average along sr) 

• {e}(r) (smeared along sr) 
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

The total strains can be determined from the superposition of the average strains of the concrete between

the cracks and the average strains due to crack kinematics. The two Mohr’s circles can be graphically

superimposed directly (summation of the components (εx, γxz/2) or (εz, γxz/2) in the x or z direction).

dt

d

dn

r

1

Total strains {e}: 

{e} = {e}(c) + {e}(r)

e  e
(c)  e

(r)

e
(c) = e

(r) if r = 

and r = p/2

(local variation 

neglected)

ε

Z

X

3

γ/2

e e

e
(r)

e
(c)

cracks parallel to 

and opening at r = p/2: 

e = 

Strains in cracked membrane elements

Contribution to total strain:

• {e}(c) (average along sr) 

• {e}(r) (smeared along sr) 
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 



Compression field models
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Classic compression field 

model

Modified compression field 

theory (MCFT)

Cracked membrane model 

with rotating cracks (CMM-R)

Cracked membrane model 

with fixed cracks (CMM-F)

Main 

assumptions

Stress-free rotating cracks

θσ = θε = θr

σc1 = 0

“Stress-free” rotating cracks

θσ = θε = θr

σc1m(ε1) > 0 (avg. tension stiff.)

Stress-free rotating cracks

θσ = θε = θr

σc1r = 0

Fixed interlocked cracks

θσr ≠ θε ≠ θr

σc1r ≠ 0 (aggregate interlock)

Equilibrium (3 equations) in average stresses

(3 equations)

at the crack

(3 equations)

at the cracks

(7 equations)

Compression 

softening

neglected

(ultimate load overestimated)

considered considered considered

Tension

stiffening

neglected

(stiffness underestimated)

as average concrete property

(lack of consistency)

according to tension chord 

model

according to tension chord 

model

Crack 

spacing

sr → 0 sr cannot be estimated sr can be estimated sr can be estimated

Deformation 

capacity

cannot be estimated cannot be consistently 

estimated

can be estimated can be estimated

The load-deformation behaviour of reinforced concrete membrane elements can be investigated

with compression field models. Such models are characterised by the fact that the load-bearing

behaviour is dominated by a compressive stress condition in the concrete that is inclined in

relation to the reinforcement directions. Smaller tensile or compressive stresses in the concrete

may act perpendicular to these principal compressive stresses. Models, which consider

interlocked cracks of given, fixed inclination, can also be called compression field models.

This slide gives an overview of the most relevant compression field models, which are

discussed in detail in the following slides and the annex.
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Compression field models

Classic compression field model with fct = 0 – stress-free cracks with variable crack inclination

Equilibrium Compatibility Material properties
τ

σ

−e3

ε
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X
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γ/2

Q

cracks parallel to 

and opening at r = p/2 

→ e = 

Zc

z sz 

σ

applied 
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concrete 
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3 1 0=
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sx, sz

−c3

ee

ex, ez

According to the classical compression field model, fictitious, rotating cracks with infinitesimally small

crack spacing are considered (see figure). These cracks are stress-free, run parallel to the principal

compressive stress direction and open perpendicularly to their direction. The principal directions of the

stresses and strains are therefore identical. Variations of the stresses in the reinforcement and in the

concrete (especially due to bond) are neglected. A uniform uniaxial compressive stress condition therefore

prevails in the concrete. The principal directions can adjust during the load history depending on the

magnitude of the applied loads. In general, the principal directions rotate with increasing load.

The strain state is clearly determined by three arbitrary, non-collinear strains (see Mohr's circle), for

example {εx, εz, ε3 }. If the constitutive relationships of concrete and reinforcement are known, all quantities

in the three equilibrium equations can be expressed as a function of the three strains. With a given strain

state, the stress state {σx, σz, τzx } can thus be determined by integration. Conversely, the determination of

the strain state for a given stress usually requires an iterative procedure.

Compression field models

Classic compression field model with fct = 0 – stress-free cracks with variable crack inclination

Equilibrium Compatibility Material properties
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sx, sz

−c3

ee

ex, ez



Compression field models

Classic compression field model with fct = 0 – stress-free cracks with variable crack inclination

Equilibrium Compatibility Material properties
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sx, sz

−c3

ee

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ez , ez und e3 )

Cracked elastic behaviour (n = Es /Ec): analytical solution for

principal direction  [Baumann 1972]:

Prediction of the load-deformation behaviour:

• Ultimate load overestimated (concrete compression failure)

→Compression softening!

• Stiffness is underestimated

→Tension stiffening!

( ) ( )2 2tan 1 tan cot 1 cot xz
x z x z x z

xz xz

n n


 +  +  =  +  + 
 

ex, ez

With classical compression field models, the deformations are greatly overestimated because rotating

cracks are considered and the stiffening effect of the concrete between the cracks is neglected. Since the

concrete compressive strength depends on the strain state ("compression softening"), the failure load can

only be predicted inaccurately (except in under-reinforced elements whose failure occurs due to the

yielding of both reinforcements).

The Kupfer-Baumann equation can be derived directly from the equilibrium and kinematic compatibility

conditions assuming a cracked elastic behaviour.
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Compatibility

Compression field models

Classic compression field model with fct = 0 – stress-free cracks with variable crack inclination

Equilibrium Compatibility Material properties
τ

σ

−e3

ε

Z

X

13

γ/2

Q

cracks parallel to 

and opening at r = p/2 

→ e = 

Zc

z sz 

σ

applied 

stresses

concrete 

stresses

3 1 0=




x sx 

Xc X

ZQc

2

3
2

3

3

cos

sin

sin cos

c

c

x sx

z

x

x

sz

z c

z





 

 

 

= +

=

− 

 



 +





=

2 3

3

cot z

x

e

e − e
 =

e − e

15.11.2023 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 27

sx, sz

−c3

ee

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ez , ez und e3 )

Cracked elastic behaviour (n = Es /Ec): analytical solution for

principal direction  [Baumann 1972]:

Prediction of the load-deformation behaviour:

• Ultimate load overestimated (concrete compression failure)

→Compression softening!

• Stiffness is underestimated

→Tension stiffening!

( ) ( )2 2tan 1 tan cot 1 cot xz
x z x z x z

xz xz

n n


 +  +  =  +  + 
 

ex, ez



−c3, c1m−c3

Compression field models

Modified compression field theory: Consideration of compression softening and tension stiffening

Equilibrium Material properties
τ

σ

−e3

ε

Z

X

13

γ/2

ee

Q

Compression

Softening

MCFT: 

Tension stiffening as a 

material property of 

concrete
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1
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a b
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+  e
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e − e
 =

e − e
external 

stresses

concrete 

stresses
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Compatibility

cracks parallel to 

and opening at r = p/2 

→ e = 

c1m = 

c1m(e1)

sx, sz

ex, ez
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x s
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z c z

In order to overcome the mentioned difficulties (too soft behaviour), various modifications of the classical

compression field model were proposed.

The first of such models, the "Modified Compression Field Theory" proposed by Vecchio and Collins, is

often used today. In this model, it is assumed that the principal directions of the strains and so-called

average stresses in the concrete coincide. According to this model, the average principal concrete

compressive stress is accompanied by an average principal concrete tensile stress. This has the

consequence that the (average) steel stresses are lower than those according to the classical

compression field model with equal stress and identical principal direction. Thus, the corresponding strains

are lower, which equals an implicit consideration of bond. In the model, however, the stress-strain

relationships of the bare steel are used as a function of average stresses and strains, which represents a

conceptual weak point and leads to an overestimation of the load-bearing resistance (since tensile

stresses in the concrete are acting simultaneously). To prevent this, an additional verification of the steel

stresses at the cracks has been introduced, allowing considerable shear stresses on the crack faces.

However, this is incompatible with the assumption underlying the model that the principal directions of

average stresses and strains coincide.

The Softened Truss Model, which was later proposed by Hsu, is essentially the same as the Modified

Compression Field Theory. However, it eliminates the conceptual weakness mentioned above by using

appropriately adjusted relations for the average stresses in the reinforcement as a function of the mean

strains (lowering the steel stresses to compensate for the concrete tensile stresses). However, this model

was less successful.
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Consideration of the tension stiffening by “average" tensile 

stresses in concrete (MCFT, Vecchio & Collins, 1986) leads to 

good overall results, but is not fully consistent:

• Overestimation of load capacity → verification "shear at 

crack" (incompatible with basic assumption e =  )

• There is no section with equilibrium in “average" stresses

• Tension stiffening  Concrete property  isotropic

(main influence: x, z → orthotropic)

• No information on stresses at the crack, crack spacing, etc.
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Assumption of stress-free cracks with variable crack 

direction

→ Stress field with uniaxial compression (parallel to crack 

direction) in concrete at cracks

Equilibrium at the crack

→ Equations identical to the classical compression field model 

with fct = 0

Treatment of reinforcement as tension chords

→ Tension stiffening increases stiffness, not ultimate load

→ Stress-strain relationships for stresses at crack sxr, szr with 

respect to mean strains ex, ez
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Neither the Modified Compression Field Theory nor the Softened Truss Model (or any other earlier

compression field model) provides information about crack spacing, crack width, or the location of

reinforcement strains near the crack. These models are therefore not suitable for investigating questions

of minimum reinforcement or deformation capacity. In addition, models which formulate equilibrium as a

function of average stresses between cracks have the disadvantage that by introducing average tensile

stresses in the concrete, the connection to limit analysis is lost (there is no section on which equilibrium

could be formulated in "average stresses"). Also for the investigation of the applicability of limit analysis

(plasticity theory) methods, the discussed models are only suitable to a limited extent.

This unsatisfactory situation was the starting point for the development of the Cracked Membrane Model

(CMM) at ETH Zurich in the late 1990s. This mechanically consistent model combines the concepts of the

classical compression field model and the tension chord model. Crack spacing and tensile stresses

between cracks are derived from basic principles of mechanics, and the link to the limit analysis for

reinforced concrete membrane elements is maintained, since equilibrium is formulated in stresses at the

cracks - and not in average stresses between the cracks.

In its general formulation (see below) the Cracked Membrane Model considers general crack inclinations,

i.e. the cracks do not have to be stress-free or coincide with the principal strain directions. Following, the

simplified CMM with stress-free cracks will be presented.

Assumption of stress-free cracks with variable crack 

direction

→ Stress field with uniaxial compression (parallel to crack 

direction) in concrete at cracks

Equilibrium at the crack

→ Equations identical to the classical compression field model 

with fct = 0

Treatment of reinforcement as tension chords

→ Tension stiffening increases stiffness, not ultimate load

→ Stress-strain relationships for stresses at crack sxr, szr with 

respect to mean strains ex, ez
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Assumption of stress-free cracks with variable crack 

direction

→ Stress field with uniaxial compression (parallel to crack 

direction) in concrete at cracks

Equilibrium at the crack

→ Equations identical to the classical compression field model 

with fct = 0

Treatment of reinforcement as tension chords

→ Tension stiffening increases stiffness, not ultimate load

→ Stress-strain relationships for stresses at crack sxr, szr as 

function of mean strains ex, ez

Determination of stresses in concrete and crack spacing

→ Stress in the concrete = superposition of the compression field 

and the stresses transferred to the concrete by bond

→ Condition for diagonal crack spacing: Principal tensile stress 

between two cracks must not exceed fct.

→ Crack spacings in the direction of reinforcement are 

geometrically linked to diagonal crack spacing:

srx = sr /sinr , srz = sr /cosr
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→ Stress field with uniaxial compression (parallel to crack 

direction) in concrete at cracks

Equilibrium at the crack

→ Equations identical to the classical compression field model 

with fct = 0

Treatment of reinforcement as tension chords

→ Tension stiffening increases stiffness, not ultimate load

→ Stress-strain relationships for stresses at crack sxr, szr as 

function of mean strains ex, ez

Determination of stresses in concrete and crack spacing

→ Stress in the concrete = superposition of the compression field 

and the stresses transferred to the concrete by bond

→ Condition for diagonal crack spacing: Principal tensile stress 

between two cracks must not exceed fct.

→ Crack spacings in the direction of reinforcement are 

geometrically linked to diagonal crack spacing:
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Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening

In the simplified Cracked Membrane Model, stress-free, rotating cracks that run perpendicular to the

direction of the principal tensile strain are considered as in the classical compression field model. The

crack direction θ is, therefore, a variable and not a given angle. The principal compressive direction of the

concrete stresses at the cracks coincides with that of the principal strains.

For stress-free cracks - except for the index r - the same equilibrium conditions are obtained as for the

classical compression field model (see figure). These relationships can be read directly from Mohr's

circles.

The steel and bond stresses are treated according to the tension chord model according to slides 34-36.
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Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Consideration of tension stiffening via modified stress-

strain relationship of the reinforcement

(CMM, Kaufmann & Marti 1998):

→ Equilibrium formulated in stresses at crack "r", 

consistent with basic assumption

→ Direct information on maximum stresses at the crack, 

crack spacing etc.

→ Direct link to limit analysis

→ Good prediction of load-deformation behaviour

Compression 

softening

Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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→ Equilibrium formulated in stresses at crack "r", 

consistent with basic assumption

→ Direct information on maximum stresses at the crack, 

crack spacing etc.

→ Direct link to limit analysis

→ Good prediction of load-deformation behaviour
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Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Stress-strain relationship required for 

stresses at crack as a function of 

average strains

→ Tension chord model

Consideration of tension stiffening via modified stress-

strain relationship of the reinforcement

(CMM, Kaufmann & Marti 1998):

→ Equilibrium formulated in stresses at crack "r", 

consistent with basic assumption

→ Direct information on maximum stresses at the crack, 

crack spacing etc.

→ Direct link to limit analysis

→ Good prediction of load-deformation behaviour

Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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→ Tension chord model

Consideration of tension stiffening via modified stress-

strain relationship of the reinforcement

(CMM, Kaufmann & Marti 1998):

→ Equilibrium formulated in stresses at crack "r", 

consistent with basic assumption

→ Direct information on maximum stresses at the crack, 

crack spacing etc.

→ Direct link to limit analysis

→ Good prediction of load-deformation behaviour

Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Exact solution

→ quadratic equation for maximum diagonal crack spacing sr0
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Maximum crack spacing for uniaxial tension in 

reinforcement direction: srx0, srz0 

(according to the tension chord model)

Geometric relationship between srx, srz and 

diagonal crack spacing sr

Parameters for crack distance l = 0.5...1:

(l = 1.0: max. crack distance sr = sr0

l = 0.5: min. crack distance sr = sr0 /2)

Principal stress c1 between two cracks:

τ

 fct
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σσr
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Qcr

Zcr
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two
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Dcx = lx·fct

Dcz = lz·fct

at the 

crack

Compression field models

Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing

The crack distances in the reinforcement directions are geometrically linked to the diagonal crack distance

(see figure on slide 30). The stresses in the concrete between the cracks result from the superposition of

the diagonal compressive stress field acting at the crack faces (parallel to the cracks) with the tensile

stresses, which are transferred to the concrete by the two reinforcements via the bond stresses.

The maximum diagonal crack spacing results from the condition that the principal stress in the centre

between the cracks cannot exceed the tensile strength.

The parameter λ for the diagonal crack distance has the same meaning as for uniaxial loading in the

tension chord model (theoretically λ = 0.5 ... 1.0).
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l = 0.5: min. crack distance sr = sr0 /2)
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Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing



τ τ τ

Approximation (symmetric / antisymmetric part of the composite)

Closed form approximate solution for 

maximum diagonal crack distance sr0 :
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Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing

Compression field models

The relationship for the maximum crack spacing can be simplified by breaking down the tensile stresses,

which are transferred to the concrete by the two reinforcements via bond stresses. They are separated

into a symmetric and an antisymmetric component. The principal tensile stress is approximated by

neglecting the change in the principal direction between the cracks.

The resulting relationship for the maximum crack distance is sufficient in most cases (and an upper limit

for the more accurate value) and is also used in standards today. It was derived earlier by Vecchio and

Collins on the basis of plausibility considerations.

τ τ τ

Approximation (symmetric / antisymmetric part of the composite)

Closed form approximate solution for 

maximum diagonal crack distance sr0 :
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Compression field models
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Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing

Compression field models
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Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing

Compression field models



Repetition of the slide (4) shown in the introduction.

39

Membrane elements - Load-deformation behaviour
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Reinforced concrete membrane element under monotonous load 

increase

1. Uncracked behaviour: Like homogeneous concrete membrane element 

(slight differences due to restraint shrinkage etc.)

2. Initial cracking approximately perpendicular to the principal tensile stress 

direction

3. Crack formation → Redistribution of internal forces → Change of 

principal stress directions immediately after crack formation

4. Cracked-elastic behaviour: Principal stress directions ± constant as long 

as both reinforcements remain elastic 

5. Yielding of a reinforcement 

→ Decrease in stiffness → Further rearrangement of internal forces 

→ New cracks (closer to the direction of the non-yielding reinforcement)

6. Failure due to failure of the concrete or yielding of the other 

reinforcement (possibly reinforcement ruptures or aggregate interlock 

fails)

without

bond

z-reinf.

yields

6

0
0 [‰]xz

20

6

0
1

cot  [-]r
2

concrete 

cracking

z-reinf.

yields

with bond

[MPa]
xz

[MPa]
xz

concrete cracking

irrelevant for 
serviceability 

limit state
Serviceability limit state:

cracked-elastic,

r  const.
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−c3r
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Softening

CMM: Tension 

stiffening according

to the tension chord

model

diagonal crack 

spacing 

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ex , ez , and e3 )

Cracked elastic behaviour (n = Es /Ec): analytical solution for r

(with fct = 0 → same as Baumann 1972): 

( )

( )

2

2

1
tan 1 tan

2

1
cot 1 tan

2

z ct
r x z r x z z x z

xz xz

x ct
r z x r z x x z x

xz xz

f n
n n

n

f n
n n

n

  −  
  +  +   − l +  l + l −l =        

  −  
=   +  +   − l +  l + l −l        

Cracked membrane model with rotating cracks

Compression field models

Here it is assumed that the stresses and strains in the quarter points between the cracks are characteristic

of the behaviour of the element. With this assumption, an analytical approximate solution for the load-

deformation behaviour can be derived (exact derivation in [4], p. 192).

For linear elastic material behaviour, the strains εx, εz, and ε3 can be determined in the quarter points

between the cracks via the stress in the concrete and in the reinforcement. If these are placed in the

compatibility condition cot2θ𝑟 = ε𝑧 − ε3 / ε𝑥 − ε3 , the relationship for the crack inclination θ𝑟 according

to the slide is obtained.

The values of λx and λz are dependent on θ𝑟, so the solution requires an iterative numerical approach (but

simple, only one equation with θ𝑟 as it is the only unknown).

Additional remark

- If λ = 0 is used, the Cracked Membrane Model corresponds to the classic compression field model.

This is therefore included as a special case in the general model.
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Cracked membrane model with rotating cracks

Compression field models
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Crack widths result from strains and 

diagonal crack spacing sr : 
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Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ex , ez and e3 )

Cracked membrane model with rotating cracks

Compression field models
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Total strains {e}: 

{e} = {e}(c) + {e}(r)

e  e
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(r)

e
(c) = e

(r) if r = 

and r = p/2

(local variation 

neglected)
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e
(r)

e
(c)

cracks parallel to  

and opening at r = p/2 

e = 

Contribution to total strain:

• {e}(c) (average over sr) 

• {e}(r) (smeared over sr) 
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Total strains {e} = strains in concrete between cracks {e}(c) + strains due to crack kinematics {e}(r) 

Crack widths result from strains and 

diagonal crack spacing sr : 
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p
 =   =(valid for  and )

Cracked membrane model with rotating cracks: strains in cracked membrane elements

Compression field models

The total strains of a reinforced concrete membrane element can be interpreted as the sum of the average

crack-related strains and average strains of the concrete between the cracks, as shown in the introduction.

The crack width then results as the product of the average principal crack-related strain ε1
(𝑟)

with the

diagonal crack spacing srm.

In the Cracked Membrane Model only total strains have been considered so far. The average principal

strain due to cracking ε1
(𝑟)

can be calculated, by deducting the average principal strain of the concrete

between the cracks, ε1
(𝑐)

from the total principal strain ε1. The strains of the concrete between the cracks

can basically be calculated from the stresses in the concrete between the cracks. It turns out, however

that ε1
(𝑐)

in comparison with ε1 can be neglected (for not very high reinforcement ratios), especially since

only upper and lower limits can be specified for the diagonal crack distance srm.

Additional remark: Note that neglecting ε1
(𝑐)

does not mean that tension stiffening is neglected: The major

influence of tension stiffening is captured by the lower value of 𝜀1 obtained due to the consideration of

stress-strain relationships of the reinforcement expressing steel stresses at cracks as a function of

average strains (TCM).

dt

d

dn

r

1

Total strains {e}: 

{e} = {e}(c) + {e}(r)

e  e
(c)  e

(r)

e
(c) = e

(r) if r = 

and r = p/2

(local variation 

neglected)

ε

Z

X

3

γ/2

e e

e
(r)

e
(c)

cracks parallel to  

and opening at r = p/2 

e = 

Contribution to total strain:

• {e}(c) (average over sr) 

• {e}(r) (smeared over sr) 
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Total strains {e} = strains in concrete between cracks {e}(c) + strains due to crack kinematics {e}(r) 

Crack widths result from strains and 

diagonal crack spacing sr : 

   
( )

 
( )

 
( )

   
( )

( ) ( )

( ) ( )
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0 1 0 1
2
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c r r c

r

r r r c
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r r r

c

c r
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w s s

f
w s s

E

e e

e = e + e → e = e − e

→ = e = e − e

 l
→ = l e −  l e 

 

p
 =   =(valid for  and )

Cracked membrane model with rotating cracks: strains in cracked membrane elements

Compression field models
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Equilibrium Material properties
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Compression 

Softening

CMM: Tension 

stiffening according 

to the tension chord 

model

diagonal crack 

spacing?

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ex, ez , and e3 )

Prediction of the load-deformation behaviour:

• estimation of crack spacing based on mechanics

• useful for the serviceability limit state and the load capacity

• realistic prediction of stiffness and strength  > min

(serviceability limit state: by means of analytical approximation 

solution)

Cracked membrane model with rotating cracks

Compression field models
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Prediction of the load-deformation behaviour:

• estimation of crack spacing based on mechanics

• useful for the serviceability limit state and the load capacity

• realistic prediction of stiffness and strength  > min

(serviceability limit state: by means of analytical approximation 

solution)

Cracked membrane model with rotating cracks

Compression field models



• The Cracked Membrane Model was validated with "all" 

known test data. (University of Toronto, University of 

Houston, Kajima Corp., etc.)

• Good correlation of strength and stiffness as well as the 

crack direction r,  for  > min

• Failure due to steel rupture (limited ductility) could be 

predicted in some cases. 
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Cracked membrane model with rotating cracks: Comparison with experiment: load-deformation behaviour

Compression field models

Additional remark

For small loads, the Cracked Membrane Model overestimates the tension stiffening; the general equation

for crack spacing applies only to a limited extent.

• As with tension elements, the minimum and maximum diagonal crack spacing sr differ by a factor of 2

(l = 0.5... 1). For the crack distances srx and srz in the reinforcement directions, however, this

relationship obviously no longer applies, since they are geometrically linked with sr = lsr0 . (see

earlier slides, srx = sr /sinθr , srz = sr /cosθr).

• Due to the prevailing uncertainty regarding sr, the closed analytical approximation formula is usually

sufficient for practical applications.

• The Cracked Membrane Model was validated with "all" 

known test data. (University of Toronto, University of 

Houston, Kajima Corp., etc.)

• Good correlation of strength and stiffness as well as the 

crack direction r,  for  > min

• Failure due to steel rupture (limited ductility) could be 

predicted in some cases. 
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Cracked membrane model with rotating cracks: Comparison with experiment: load-deformation behaviour

Compression field models
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Tests by Proestos (2014): membrane elements 1525-1525-355 mm under uniform load

KS4: pure shear KS5: shear and biaxial tension 

(proportional)

KS6: shear and biaxial

compression (proportional)

nonlinear

(numerical)

linear approx.

(analytical.)
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Cracked membrane model with rotating cracks: Comparison with experiments: crack widths

Compression field models

To date, only a few test results are available which are suitable for a comparison of the measured and

calculated crack widths. The main reason for this is that the crack widths (distances, opening/width, slip)

were only systematically measured in few individual test series. There is therefore only limited information

on the crack kinematics and in particular practically no data on the crack slip (parallel crack face

displacements).

The measurement of crack kinematics is more difficult than it seems at first glance. The cracks are not

straight even under uniform loading, and the crack spacing varies greatly. Crack opening and slip are not

constant even for a single crack, but vary along its length. The crack width measurement "by hand" (crack

magnifier, crack scale, ...) is often implicitly carried out at the point where the crack (initially) is the widest.

These crack widths are then averaged over several cracks and specified as "mean" crack widths. An

averaging of the crack widths along the crack is hardly feasible when measuring "by hand". Crack slip can

hardly be detected with conventional measuring methods (if the location of the crack is not known

beforehand so that a sensor could be mounted).

Better experimental data can be obtained by evaluating measurements with digital image correlation. In

the current experiments at ETH Zurich, such measurements are carried out, and the crack kinematics are

determined semi-automatically ("automated crack detection and measurement“, ACDM).

The slide shows predictions according to CMM and results of the Proestos experiments (2014). The

comparison shows an excellent correlation with the measured crack widths. It can be seen that even the

analytical approximate solution for the serviceability limit state provides sufficiently accurate results (crack

slip was not measured in these tests either so that no validation is possible in this respect). The slight

underestimation of wrmax may be due to the fact that the maximum crack widths per crack were measured.
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Tests by Proestos (2014): membrane elements 1525-1525-355 mm under uniform load

KS4: pure shear KS5: shear and biaxial tension 

(proportional)

KS6: shear and biaxial

compression (proportional)

nonlinear

(numerical)

linear approx.

(analytical.)
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Cracked membrane model with rotating cracks: Comparison with experiments: crack widths

Compression field models



Fictitious, rotating, stress-free cracks vs real, interlocking cracks

• Unsatisfactory prediction for  < min , no convergence for uniaxial reinforcement

→ General cracked membrane model considers fixed, interlocking cracks

→ Most general solution for:

− Only one group of parallel cracks with equal distances over the entire element

− Reinforcement is considered as equivalent stress (constant over rebar spacing and membrane element thickness).
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Cracked membrane model with rotating cracks: Application limits / open questions

Compression field models

So far, the simplified CMM has been treated with stress-free cracks.

In its general formulation, the Cracked Membrane Model takes into account general cracks that are

neither stress-free nor coincide with the principal strain directions.

Following, this general model is explained in principle without going into the details.

Fictitious, rotating, stress-free cracks vs real, interlocking cracks

• Unsatisfactory prediction for  < min , no convergence for uniaxial reinforcement

→ General cracked membrane model considers fixed, interlocking cracks

→ Most general solution for:

− Only one group of parallel cracks with equal distances over the entire element

− Reinforcement is considered as equivalent stress (constant over rebar spacing and membrane element thickness).
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Cracked membrane model with rotating cracks: Application limits / open questions

Compression field models



dt

d

dn

r

Membrane element Stresses at crack / equilibrium Displacements & strains

( )

( )

( )

2 2

2 2

sin cos sin 2

cos sin sin 2

sin cos cos(2 )

cnr ctr ctnr

cnr ctr ctnr

cnr ctr ctnr

r r r

r r r

r r r

z szr

x sx

z

rx

xz

= +  +  − 

= + 

  

  

  

  +  + 

= −  





 − 

  en
(c), et

(c), nt
(c) are independent of the 

coordinate t; thus nt
(c) /t = 0, i.e. 

et
(c)/n = 0 and et

(c) = constant

(en = u/n, et = v/t, nt = u/t + v/n)

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship
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cnr = cnr (dn, dt )
ctnr = ctnr (dn, dt )

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models

The slide shows the basic assumptions and designations of the general cracked membrane model.

dt

d

dn

r

Membrane element Stresses at crack / equilibrium Displacements & strains
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(c) /t = 0, i.e. 

et
(c)/n = 0 and et

(c) = constant

(en = u/n, et = v/t, nt = u/t + v/n)

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship
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cnr = cnr (dn, dt )
ctnr = ctnr (dn, dt )

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models



General solution method (for given crack inclination and spacing)

Assumption / estimation of 7 primary unknowns:

• 3 stress components at crack sxr, szr, ctr 

• 2 crack displacements (opening and slip) dn, dt

• 2 concrete displacements at the crack ucr, vcr

Determine the concrete stresses at the crack cnr, ctnr via the crack opening and slip
dn, dt using the aggregate interlock relationship cnr = cnr (dn, dt ), ctnr = ctnr (dn, dt ).

The bond stress as well as the stresses, strains, and displacements in the concrete 

and reinforcement are determined by means of the differential equilibrium and the 

compatibility conditions. This is done starting from the crack (n = sr /2), in infinitesimal 

steps dn going towards n = 0.

Iteration until the following conditions are met (7 equations for 7 unknowns):

• 3 equilibrium conditions at the crack

• 2 components of the concrete displacements uc, vc and 2 reinforcement 
displacements usx, usz must vanish in the middle between two cracks.
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Membrane element

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models

In the general case the consideration of a set of parallel cracks leads to a system of 7 equations with 7

unknowns.

General solution method (for given crack inclination and spacing)

Assumption / estimation of 7 primary unknowns:

• 3 stress components at crack sxr, szr, ctr 

• 2 crack displacements (opening and slip) dn, dt

• 2 concrete displacements at the crack ucr, vcr

Determine the concrete stresses at the crack cnr, ctnr via the crack opening and slip
dn, dt using the aggregate interlock relationship cnr = cnr (dn, dt ), ctnr = ctnr (dn, dt ).

The bond stress as well as the stresses, strains, and displacements in the concrete 

and reinforcement are determined by means of the differential equilibrium and the 

compatibility conditions. This is done starting from the crack (n = sr /2), in infinitesimal 

steps dn going towards n = 0.

Iteration until the following conditions are met (7 equations for 7 unknowns):

• 3 equilibrium conditions at the crack

• 2 components of the concrete displacements uc, vc and 2 reinforcement 
displacements usx, usz must vanish in the middle between two cracks.
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Membrane element

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models



Lack of experimental data (measured directly, not biased by the measurement)

• Stresses in concrete cannot be measured experimentally (they are usually estimated by surface strains).

• Local measurements of the stresses in the steel with conventional instrumentation (e.g. with strain gauges, ...) depend on 

the location of the measurement (near or far from the crack). In addition, they usually disturb the bond.

→ The most commonly used relationships for tension stiffening and compression softening have been insufficiently validated 

with experiments.

→ Today, it is possible to measure the steel strains continuously along an embedded reinforcing bar using fibre optic strain 

sensing without disturbing bond; new insights from experimental testing of panels

• Crack kinematics (in particular the crack slip) are difficult to record with conventional instrumentation (unless the location of 

the cracks is known in advance); only limited experimental data are available.

• Push-off tests are not necessarily representative of aggregate interlock in biaxially reinforced elements.

→ Aggregate interlock relationship still needs to be validated.

→ Today, with 3D Digital Image Correlation (DIC) and Automatic Crack Detection & Measurement of their kinematics (ACDM) 

new insights into the behaviour are gained
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Cracked membrane model with fixed cracks: Application limits / open questions

Compression field models

At ETH Zurich, experiments are currently being carried out in LUSET to help clarify these points.

Lack of experimental data (measured directly, not biased by the measurement)

• Stresses in concrete cannot be measured experimentally (they are usually estimated by surface strains).

• Local measurements of the stresses in the steel with conventional instrumentation (e.g. with strain gauges, ...) depend on 

the location of the measurement (near or far from the crack). In addition, they usually disturb the bond.

→ The most commonly used relationships for tension stiffening and compression softening have been insufficiently validated 

with experiments.

→ Today, it is possible to measure the steel strains continuously along an embedded reinforcing bar using fibre optic strain 

sensing without disturbing bond; new insights from experimental testing of panels

• Crack kinematics (in particular the crack slip) are difficult to record with conventional instrumentation (unless the location of 

the cracks is known in advance); only limited experimental data are available.

• Push-off tests are not necessarily representative of aggregate interlock in biaxially reinforced elements.

→ Aggregate interlock relationship still needs to be validated.

→ Today, with 3D Digital Image Correlation (DIC) and Automatic Crack Detection & Measurement of their kinematics (ACDM) 

new insights into the behaviour are gained
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Cracked membrane model with fixed cracks: Application limits / open questions

Compression field models



Measured or calculated?

Determination of stress and strain state in experiments 

Equilibrium Compatibility Material properties
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sx, sz

−c3

ee

With conventional measuring methods the average strains and the applied loads can be measured. This

was done in previous tests on membrane elements.

These measurements were then used to calculate the stresses in concrete and reinforcement, assuming a

characteristic curve of the reinforcement and the concrete: In the MCFT by assuming "average" steel

stresses = characteristic curve of the bare reinforcement, in the CMM under prerequisite of the tension

chord model per reinforcement direction. When many MCFT publications talk about "measured stresses"

in the reinforcement (and sometimes also in the concrete), this is therefore misleading: The stresses were

not measured, but are obtained by assuming a material law that cannot be determined directly from a

material test.

With continuous strain measurements along the entire length of the reinforcing bar, however, the stresses

in the reinforcement can actually be determined directly from the well known characteristic curve of the

bare steel. However, this must not affect the bond. Today, this is done at ETH Zurich with fiber-optic strain

measurements.

Thus, it is no longer necessary to postulate material laws for reinforcement and concrete (taking

compression softening and tension stiffening into account), but rather, these result from the measured

stresses - with which the assumptions can be validated.

If, in addition, the strains of the surface are recorded over the entire surface and the crack kinematics are

determined from this (see slide 53), then aggregate interlock relationships (crack opening and slip <->

normal and shear stress at the crack) can be determined.

Measured or calculated?

Determination of stress and strain state in experiments 

Equilibrium Compatibility Material properties
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sx, sz

−c3

ee



Measured or calculated?

Determination of stress and strain state in experiments with conventional measurements

Equilibrium Compatibility Material properties
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Measured or calculated?

Determination of stress and strain state in experiments with conventional measurements

Equilibrium Compatibility Material properties
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Measured or calculated?

Determination of stress and strain state in experiments with continuous strain measurement (fibres)
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Compatibility and deformation capacity of membrane elements: Summary
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Summary

• The Cracked Membrane Model (general formulation with aggregate interlock) requires (numerical) solving of seven highly 

nonlinear equations with seven unknown quantities: very complex

• Simplification with Cracked Membrane Model (without aggregate interlock) = combination of the classic compression field 

models with the tension chord model:

− Stress-free cracks parallel to the direction of the principal strains (variable crack direction, fictitious cracks)

− Tension stiffening effect of the concrete between the cracks according to the tension chord model

(without influence on resistance of reinforcement, indirect influence on ultimate load as strains become smaller

→ higher concrete compressive strength)

− Concrete compressive strength as a function of strain state (transverse strain)

• The Cracked Membrane Model (without aggregate interlock) generally provides good agreement with test results. In the 

serviceability limit state (elastic reinforcement), the analytical approximation solution can be easily applied.

• The consideration of the aggregate interlock (general formulation of the Cracked Membrane Model ) would make sense if 

the element is only reinforced in one direction or if the reinforcement ratio is very low in the other direction.
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Shear Panel Tester, University of Toronto (1979)
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In-plane loading (3 stress resultants)

Applied in-plane loads 

perpendicular and parallel to element edge

→ principal direction of applied loads variable

→ reinforcing bars parallel to element edges

Element size 890-890-70 mm

In the Shear Panel Tester, elements with dimensions of 890x890x70 mm can be tested under pure

membrane loading (3 stress resultants: membrane (in-plane) forces {nx, nz, nxz }), with any principal

direction of the applied stress.

The load is applied by 40 hydraulic actuators parallel to the element plane (resp. 37 hydraulic actuators

and 3 pendulum rods). The load is introduced via five load introduction elements on each side of the

element. At each load introduction element, two hydraulic actuators act in the element plane at an angle of

+45° or -45° to the element edge (transmitted via a sophisticated scissor system). By varying the hydraulic

actuator forces, the desired membrane load (nn and ntn ) can be set (equal hydraulic actuator forces with

same sign = compression or tension nn, equal hydraulic actuator forces with opposite sign = shear ntn ,

etc.). The reinforcement runs through holes in the load introduction elements and is bolted to these on

their rear side.

Since the principal direction of the applied membrane (in-plane) stresses is variable (shear and normal

forces in the element plane in any combination), the elements can always be reinforced parallel to the

element edges.

Due to the limited dimensions, very thin reinforcing bars and a concrete with a reduced maximum

aggregate size are used, which must be taken into account when interpreting the test results.

Shear Panel Tester, University of Toronto (1979)
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Shell Element Tester, University of Toronto (1984 / 2009)
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General loading (8 stress resultants)

Applied loads in-plane and out-of-plane,

perpendicular to element edge

→ principal direction of applied loads constant

→ reinforcing bars at angle to element edges

Element size 1,524-1,524-350 mm

In the Shell Element Tester, elements with dimensions of 1,524x1,524x400 mm can be tested under

general shell loading (8 stress resultants): membrane (in-plane) forces { nx, nz, nxz }, bending and twisting

moments { mx, mz, mxz }, and transverse (out-of-plane) shear forces { vx, vz }), with constant principal

direction of the applied membrane load.

The load is applied via 60 servo-hydraulically controlled actuators (40 acting in the plane of the element,

capacity 1 MN each and 20 acting out of the plane of the element, capacity 0.5 MN each, 60 control

circuits). The load is applied via five yokes on each side of the element. Each yoke is equipped with three

actuators: two actuators parallel to the element plane and perpendicular to the element edge, and one

actuator perpendicular to the element plane. While the latter corresponds to the applied transverse shear

force vn, the desired combination of membrane and bending stress (nn and mn ) can be set by varying the

two actuator forces parallel to the element plane (equal actuator forces with the same sign = pure

compression or tension nn, equal actuator forces with opposite sign = pure bending mn, etc.). Twisting

moments mtn can be applied by corner forces ±2mtn acting perpendicular to the element plane (see lecture

on plates, equivalence of corner forces and twisting moments).

The principal direction of the applied membrane forces is constant in this test facility (parallel to the

element edges). Tests with alternating principal stress direction of the load (for example first longitudinal

compression, then shear) are therefore not possible. In order to investigate shear stress with respect to

the reinforcement directions, the elements are reinforced at an angle to the element edges; the

reinforcement is welded to blocks which are bolted to the yokes.

The dimensions of the elements allow for the use of standard reinforcement diameters and concrete with

standard maximum aggregate size.

Shell Element Tester, University of Toronto (1984 / 2009)
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General loading (8 stress resultants)

Applied loads in-plane and out-of-plane,

perpendicular to element edge

→ principal direction of applied loads constant

→ reinforcing bars at angle to element edges

Element size 1,524-1,524-350 mm
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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100 presses

each 1'400 kN

Load introduction

20 yokes, 20 blocks bolted to yokes

reinforcing bars with threaded ends

and bar couplers (e.g. Bartec )

0.4m

cos
0.4m

sin
0.4m

z
n

of if or ir

n

of if or ir

tn

P
v

P P P P
n

P P P P
n

=

+ + +
=  

− + − +
=  

( ) ( )

( ) ( )

1.5 0.5
cos

0.4m

1.5 0.5
sin

0.4m

or of ir if

n

or of ir if

tn

P P e P P e
m

P P e P P e
m

−  + − 
=  

− −  + − 
=  

The load is applied by 100 servo-hydraulically controlled actuators (80 acting in the plane of the element,

capacity each approx. 1.5 MN, and 20 acting out of the plane of the element, capacity each approx. 1.3

MN, 20 control circuits).

The load is transferred via five yokes on each side of the element. Each yoke has five actuators, see

figure: two actuators parallel to the element plane at an angle of +26.56° (outside, inclination +1:2) or -

26.56° (inside, inclination -1:2) and one actuator perpendicular to the element plane. The latter

corresponds to the applied transverse (out-of-plane) shear force vn. By varying the four actuator forces

parallel to the element plane, the desired combination of membrane and bending stress (nn, ntn und mn,

mtn ) can be set, for example:

- Four equal actuator forces with the same sign = pure compression or tension nn

- Four equal actuator forces, outside/inside opposite sign = pure membrane shear nn

- Front two actuators tension, rear two actuators compression = bending moment mn

- Actuators from front to rear alternating tension-compression = twisting moment mtn

In the latter two cases, the forces of the inner and outer actuators must be inversely proportional to their

lever arm in order to apply pure bending and twisting moments.

In summary, the five actuators per yoke can be used to apply the five stress resultants nn, ntn and mn, mtn

and vn in any magnitude. The sixth degree of freedom (rotation about the z-axis = perpendicular to the

element plane, through which the axes of the 4 actuators lying parallel to the element plane run) is free.

The corresponding rotations are only restrained by the element (specimen). In order to avoid the resulting

disruptive influences of the dead weight of the lateral yokes and presses, their weight is compensated by

gas tension springs anchored to the reaction frame (approximately constant forces at variable stroke).

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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normal force
vertical

+22/-30 MN

normal force
horizontal

+22/-30 MN

shear 

±11 MN
(1,100 t)

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)

Large forces are required to test elements made of high-strength concrete.

SN: The 30 MN compression corresponds to the weight force of approx. 35 RE460 locomotives ("Lok

2000"), which stapled on each other would correspond to a tower higher than the Prime Tower in Zurich.
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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The reaction frame of LUSET is supported and partially located in the basement, for which an opening had

to be cut into the floor slab of the lab.

The structural steelwork, the assembly of the reaction frame, and the hydraulic piping were completed in

autumn of 2016. The assembly was essentially carried out in five parts (four parts of the frame in plane

and one frame out of plane, each weighing approx. 20 t, corresponding to the combined capacity of the

two 10 t-lab cranes).

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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The installation of the yokes was complex because they cannot be mounted individually (eyebar pieces

are "nested"). The actuators could therefore only be mounted after the installation of the yokes (connected

by means of a dummy element).

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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After the assembly of the frame and the lifting of the yokes, a total of 100 actuators (80 actuators in-plane,

20 actuators out-of-plane) were installed.

After installing the actuators and oil hydraulics, the measuring and control technology was wired (one

internal displacement sensor and one load cell per actuator, one control valve with position monitoring and

two pressure sensors per control circuit, one tilt sensor per yoke). Also the 20-channel control system was

installed and specifically adapted to the requirements of LUSET. The scalable, digital control system (low-

level real-time controller in C++, high level controller in MATLAB) has a very flexible design and can be

adapted to a wide variety of configurations and test types, in load or displacement control.

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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In addition to the force and displacement measurements of the actuators, the tests are instrumented with

two different measuring systems.

Glass fibres are attached to the reinforcing bars of the elements, with which the strain of the steel can be

measured continuously over the entire bar length via optical reflection (Rayleigh backscatter analysis).

Due to the small dimensions of the fibres, the behaviour of the elements or the bond are not significantly

biased.

The measuring technique is supplemented by digital image correlation systems, with which the entire

surface is measured in 3D (on the front and back of the elements).

The combination of the measurement results allows for direct conclusions to be drawn on the mechanical

behaviour, for example on the forces transmitted via cracks in the concrete.

The first pilot tests were successfully carried out in the summer of 2017.

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Simplified solution method (for given crack inclination and spacing)

Approximate the local variation of the concrete strains en
(c), et

(c), nt
(c)  between the 

cracks based on the TCM

Assumption / estimation of 5 primary unknowns:

• Strains in concrete between two cracks {e}(c) = 3 unknowns)

• Strains due to crack kinematics {e}(r) = 2 unknowns (for known crack direction and 
distances, {e}(r) follows from crack opening and crack slip dn, dt )

Iteration until the following conditions are met (5 equations for 5 unknowns):

• 3 equilibrium conditions at the crack

• 2 aggregate interlock relationships cnr ({e}(c)) = cnr (dn, dt ), ctnr({e}(c)) = ctnr (dn, dt )

Despite the simplification of neglecting the variable concrete strains, the solution is
numerically challenging, since the crack interrelationship is highly non-linear and 
sensitive to small displacements. 

It was recently implemented successfully (Gehri 2018) and gives good results.
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Membrane element

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models
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