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2.5 Compatibility and deformation capacity
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Within this chapter, the students are able to:

▪ describe how using an effective compressive strength dependent on the transverse strain state 

modifies the boundaries of the membrane yield conditions.

▪ discuss the differences and similitudes between various compression field models which can be used 

to investigate the load-deformation behaviour of reinforced concrete membrane elements.

▪ formulate the main assumptions of the Cracked Membrane Model with stress-free cracks, including 

how to model tension stiffening for bidirectional reinforcement using the Tension Chord Model.
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2.5 Compatibility and deformation capacity

A) Influence of strains on the compressive strength

and thus on the yield conditions



Membrane elements – Effective compressive strength
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Boundary of Regime 1: concrete crushes, stronger 
reinforcement at onset of yielding → e1 can be approximated

"Exact" calculation with
CMM approach [MPa]:

Approximation with simplified e1 

along boundary Y1 (see next slide)
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Influence on yield conditions

The yield surface can be modified by taking into account the 

dependence of the concrete compressive strength on the 

transverse strains.

→ Area of Regime 1 is reduced (affected: zones with very flat / 

steep inclinations)

→ Calculation with Cracked Membrane Model (CMM, middle 

graph) is tedious

→ Approximate solution (bottom graphs):
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Boundary Regime 1: concrete crushes, stronger reinforcement at 
onset of yielding → e1 can be determined

assuming:

(unchanged)



fc=0.55fc’

fc=f(e1)

CMM

fc=f(e1)

e1 simpl.

30 =  MPacf
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Influence on yield conditions

The yield surface can be modified by taking into account the 

dependence of the concrete compressive strength on the 

transverse strains.
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steep inclinations)
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Boundary Regime 1: concrete crushes, stronger reinforcement at 
onset of yielding → e1 can be determined

fc=0.55fc’

fc=f(e1)

CMM

fc=f(e1)

e1 simpl.

30 =  MPacf
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2.5 Compatibility and deformation capacity

B) Load-deformation behaviour of membranes



Membrane elements - Load-deformation behaviour
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General

Experiment VN2

V = 360 kN

r  30°

Experiment VN2

V = 545 kN

r  17…25°

Experiment VN2

V = 548 kN

(failure)
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General

Experiment MVN1

V = 210 kN

r  35...55°

Experiment MVN1

V = 510 kN

r  25°

Experiment MVN1

V = 540 kN

(failure)
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Reinforced concrete membrane element under monotonous load 

increase

1. Uncracked behaviour: Like homogeneous concrete membrane element 

(slight differences due to restraint shrinkage etc.)

2. Initial cracking approximately perpendicular to the principal tensile stress 

direction

3. Crack formation → Redistribution of internal forces → Change of 

principal stress directions immediately after crack formation

4. Cracked-elastic behaviour: Principal stress directions ± constant as long 

as both reinforcements remain elastic 

5. Yielding of a reinforcement 

→ Decrease in stiffness → Further redistribution of internal forces 

→ New cracks (closer to the direction of the non-yielding reinforcement)

6. Failure due to crushing of the concrete or yielding of the other 

reinforcement (possibly reinforcement ruptures or aggregate interlock 

fails)

without

bond

z-reinf.

yields

6

0
0 [‰]xz
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6

0
1
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2

concrete
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with bond

[MPa]
xz

[MPa]
xz

concrete crushing
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Test facilities for uniformly stressed elements 

Shear Panel Tester Shell Element Tester Large Universal Shell Element Tester 

University of Toronto 1979 University of Toronto 1984 / 2009 ETH Zürich 2017



Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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General loading (8 stress resultants)

Applied loads in-plane and out-of-plane of general direction, i.e. 

perpendicular and parallel to element edge

→ principal direction of applied loads variable

→ reinforcing bars parallel to element edges

Element size 2,000-2,000-350 mm
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2.5 Compatibility and deformation capacity

C) Compression field approaches



Equilibrium of forces [kN/m]

Equilibrium in equivalent stresses [MPa]

(with ρ𝑥σ𝑠𝑥, ρ𝑧σ𝑠𝑧 = stresses in the reinforcement,

Τρ𝑥 = 𝑎𝑠𝑥 ℎ, Τρ𝑧 = 𝑎𝑠𝑧 ℎ)

Membrane elements - Load-deformation behaviour

External loads are in equilibrium with reinforced concrete = concrete + reinforcing steel
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Zc

Equilibrium of forces [kN/m]

Equilibrium in equivalent stresses [MPa]

(with ρ𝑥σ𝑠𝑥, ρ𝑧σ𝑠𝑧 = stresses in the reinforcement,

Τρ𝑥 = 𝑎𝑠𝑥 ℎ, Τρ𝑧 = 𝑎𝑠𝑧 ℎ)

Membrane elements - Load-deformation behaviour

External loads are in equilibrium with reinforced concrete = concrete + reinforcing steel
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Equilibrium of forces [kN/m]

Equilibrium in equivalent stresses [MPa]

(with ρ𝑥σ𝑠𝑥, ρ𝑧σ𝑠𝑧 = stresses in the reinforcement,

Τρ𝑥 = 𝑎𝑠𝑥 ℎ, Τρ𝑧 = 𝑎𝑠𝑧 ℎ)

Membrane elements - Load-deformation behaviour

External loads are in equilibrium with reinforced concrete = concrete + reinforcing steel
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c1 = 0 (uniaxial compression in concrete,

i.e. stress-free cracks with variable direction)
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external 

stresses

concrete

stresses



Membrane elements - Load-deformation behaviour

Compatibility - Mohr’s strain circle
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Strains in cracked membrane elements

Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

τ

σ3 1




Xc

Qc

ε

Strains in concrete 

between two cracks

{e}(c): e
(c)  

(locally equal, but  is 

slightly variable 

between two cracks)

concrete stresses:
γ/2

concrete

stresses

Q(c)

1(c)

3(c)
Z(c)

X(c)
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e
(c)  



ε

γ/2
Concrete strains {e}(c) between two 

cracks (local variation along u):

Q(c)

1(c)

3(c)

Strains in cracked membrane elements

Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

Z(c)

X(c)
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Strains in concrete 

between two cracks

{e}(c): e
(c)  

(locally equal, but  is 

slightly variable 

between two cracks)
e

(c)  



Strains in cracked membrane elements

ε

Strains due to crack 

kinematics {e}(r) :

e
(r)  r

(except for r = p/2)

Q(r) Z(r)

X(r)

1(r)3(r)

e(r)

N

e(r)

Crack kinematics (parallel set of cracks):

sr crack spacing
r crack inclination
n, t coordinates  ⊥ and // to the crack

|d|/sr

γ/2

T
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 

r

r

dt

d

dn

r



dt

d

dn

r

ε

Strains due to crack 

kinematics {e}(r) :

e
(r)  r

(except for r = p/2)

Contribution to total strain:

• {e}(c) (average along sr) 

• {e}(r) (smeared along sr) 

Strains in concrete 

between two cracks {e}(c): 

e
(c)   (local variation of

 neglected)

Z(c)

X(c)

Z(r)

X(r)

γ/2

Strains in cracked membrane elements
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 



dt

d

dn

r

1

Total strains {e}: 

{e} = {e}(c) + {e}(r)

e  e
(c)  e

(r)

e
(c) = e

(r) if r = 

and r = p/2

(local variation 

neglected)

ε

Z

X

3

γ/2

e e

e
(r)

e
(c)

cracks parallel to 

and opening at r = p/2: 

e = 

Strains in cracked membrane elements

Contribution to total strain:

• {e}(c) (average along sr) 

• {e}(r) (smeared along sr) 
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Total strains {e} = strains in concrete between cracks {e}(c) + average strains due to crack kinematics {e}(r) 



Compression field models
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Classic compression field 

model

Modified compression field 

theory (MCFT)

Cracked membrane model 

with rotating cracks (CMM-R)

Cracked membrane model 

with fixed cracks (CMM-F)

Main 

assumptions

Stress-free rotating cracks

θσ = θε = θr

σc1 = 0

“Stress-free” rotating cracks

θσ = θε = θr

σc1m(ε1) > 0 (avg. tension stiff.)

Stress-free rotating cracks

θσ = θε = θr

σc1r = 0

Fixed interlocked cracks

θσr ≠ θε ≠ θr

σc1r ≠ 0 (aggregate interlock)

Equilibrium (3 equations) in average stresses

(3 equations)

at the crack

(3 equations)

at the cracks

(7 equations)

Compression 

softening

neglected

(ultimate load overestimated)

considered considered considered

Tension

stiffening

neglected

(stiffness underestimated)

as average concrete property

(lack of consistency)

according to tension chord 

model

according to tension chord 

model

Crack 

spacing

sr → 0 sr cannot be estimated sr can be estimated sr can be estimated

Deformation 

capacity

cannot be estimated cannot be consistently 

estimated

can be estimated can be estimated



Compression field models

Classic compression field model with fct = 0 – stress-free cracks with variable crack inclination

Equilibrium Compatibility Material properties
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sx, sz

−c3

ee

ex, ez



Compression field models

Classic compression field model with fct = 0 – stress-free cracks with variable crack inclination

Equilibrium Compatibility Material properties
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sx, sz

−c3

ee

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ez , ez und e3 )

Cracked elastic behaviour (n = Es /Ec): analytical solution for

principal direction  [Baumann 1972]:

Prediction of the load-deformation behaviour:

• Ultimate load overestimated (concrete compression failure)

→Compression softening!

• Stiffness is underestimated

→Tension stiffening!

( ) ( )2 2tan 1 tan cot 1 cot xz
x z x z x z

xz xz

n n


 +  +  =  +  + 
 

ex, ez



−c3, c1m−c3

Compression field models

Modified compression field theory: Consideration of compression softening and tension stiffening

Equilibrium Material properties
τ

σ

−e3

ε

Z

X

13

γ/2

ee

Q

Compression

Softening

MCFT: 

Tension stiffening as a 

material property of 

concrete

Zc

z sz 

3
 

x sx 

Xc X

ZQc

1

1
ce cf f

a b
= 

+  e

e1

2 3

3

cot z

x

e

e − e
 =

e − e
external 

stresses

concrete 

stresses

14.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 28

Compatibility

cracks parallel to 

and opening at r = p/2 

→ e = 

c1m = 

c1m(e1)

sx, sz

ex, ez
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Compression field models

Modified compression field theory: Consideration of compression softening and tension stiffening

Equilibrium Material properties
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Compatibility

cracks parallel to 

and opening at r = p/2 

→ e = 

sx, sz

ex, ez

Consideration of the tension stiffening by “average" tensile 

stresses in concrete (MCFT, Vecchio & Collins, 1986) leads to 

good overall results, but is not fully consistent:

• Overestimation of load capacity → verification "shear at 

crack" (incompatible with basic assumption e =  )

• There is no section with equilibrium in “average" stresses

• Tension stiffening  Concrete property  isotropic

(main influence: x, z → orthotropic)

• No information on stresses at the crack, crack spacing, etc.

−c3, c1m
Compression

Softening

MCFT: 

Tension stiffening as a 

material property of 

concretee1
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c1m(e1)
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Assumption of stress-free cracks with variable crack 

direction

→ Stress field with uniaxial compression (parallel to crack 

direction) in concrete at cracks

Equilibrium at the crack

→ Equations identical to the classical compression field model 

with fct = 0

Treatment of reinforcement as tension chords

→ Tension stiffening increases stiffness, not ultimate load

→ Stress-strain relationships for stresses at crack sxr, szr with 

respect to mean strains ex, ez
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εx, εz
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Cracked membrane model with rotating cracks: simplified

Compression field models

σ𝑥

τ𝑧𝑥

τ𝑥𝑧
σ𝑧



Assumption of stress-free cracks with variable crack 

direction

→ Stress field with uniaxial compression (parallel to crack 

direction) in concrete at cracks

Equilibrium at the crack

→ Equations identical to the classical compression field model 

with fct = 0

Treatment of reinforcement as tension chords

→ Tension stiffening increases stiffness, not ultimate load

→ Stress-strain relationships for stresses at crack sxr, szr as 

function of mean strains ex, ez

Determination of stresses in concrete and crack spacing

→ Stress in the concrete = superposition of the compression field 

and the stresses transferred to the concrete by bond

→ Condition for diagonal crack spacing: Principal tensile stress 

between two cracks must not exceed fct.

→ Crack spacings in the direction of reinforcement are 

geometrically linked to diagonal crack spacing:

srx = sr /sinr , srz = sr /cosr
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σ𝑥

τ𝑧𝑥

τ𝑥𝑧
σ𝑧
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Cracked membrane model with rotating cracks: simplified

Compression field models
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Equilibrium Material properties
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model
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Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Equilibrium Material properties
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Compatibility

cracks parallel to 

and opening at r = p/2 

→ e =  ex, ez
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CMM: Tension 

stiffening according 

to the tension chord 

model

Consideration of tension stiffening via modified stress-

strain relationship of the reinforcement

(CMM, Kaufmann & Marti 1998):

→ Equilibrium formulated in stresses at crack "r", 

consistent with basic assumption

→ Direct information on maximum stresses at the crack, 

crack spacing etc.

→ Direct link to limit analysis

→ Good prediction of load-deformation behaviour

Compression 

softening

Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Equilibrium Material properties
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Compatibility

cracks parallel to 

and opening at r = p/2 

→ e =  ex, ez
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Compression 

Softening

CMM: Tension 

stiffening according 

to the tension chord 

model

Stress-strain relationship required for 

stresses at crack as a function of 

average strains

→ Tension chord model

Consideration of tension stiffening via modified stress-

strain relationship of the reinforcement

(CMM, Kaufmann & Marti 1998):

→ Equilibrium formulated in stresses at crack "r", 

consistent with basic assumption

→ Direct information on maximum stresses at the crack, 

crack spacing etc.

→ Direct link to limit analysis

→ Good prediction of load-deformation behaviour

Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening



Membrane elements - Load-deformation behaviour
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Reinforced concrete membrane element under monotonous load 

increase

1. Uncracked behaviour: Like homogeneous concrete membrane element 

(slight differences due to restraint shrinkage etc.)

2. Initial cracking approximately perpendicular to the principal tensile stress 

direction

3. Crack formation → Redistribution of internal forces → Change of 

principal stress directions immediately after crack formation

4. Cracked-elastic behaviour: Principal stress directions ± constant as long 

as both reinforcements remain elastic 

5. Yielding of a reinforcement 

→ Decrease in stiffness → Further rearrangement of internal forces 

→ New cracks (closer to the direction of the non-yielding reinforcement)

6. Failure due to failure of the concrete or yielding of the other 

reinforcement (possibly reinforcement ruptures or aggregate interlock 

fails)

without

bond

z-reinf.

yields

6

0
0 [‰]xz

20

6

0
1

cot  [-]r
2

concrete 

cracking
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yields

with bond

[MPa]
xz

[MPa]
xz

concrete cracking

irrelevant for 
serviceability 

limit state
Serviceability limit state:

cracked-elastic,

r  const.
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Equilibrium Material properties
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CMM: Tension 

stiffening according

to the tension chord

model

diagonal crack 

spacing 

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ex , ez , and e3 )

Cracked elastic behaviour (n = Es /Ec): analytical solution for r

(with fct = 0 → same as Baumann 1972): 

( )

( )
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tan 1 tan
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cot 1 tan
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z ct
r x z r x z z x z

xz xz
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r z x r z x x z x
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  −  
  +  +   − l +  l + l −l =        

  −  
=   +  +   − l +  l + l −l        

Cracked membrane model with rotating cracks

Compression field models
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CMM: Tension 

stiffening according 

to the tension chord 

model

Crack widths result from strains and 

diagonal crack spacing sr : 

( )1 1 0 1 0 1
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ctm
r r c r r
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w s s s
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= e − e = l e −  l e 
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total strain (incl. 

tension stiffening)

deformation of the concrete 

between the cracks

crack 

spacing

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ex , ez and e3 )

Cracked membrane model with rotating cracks

Compression field models
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CMM: Tension 

stiffening according 

to the tension chord 

model

diagonal crack 

spacing?

Unique solution: 3 equations for 3 unknowns

(3 non-collinear strains as primary unknowns

e.g. ex, ez , and e3 )

Prediction of the load-deformation behaviour:

• estimation of crack spacing based on mechanics

• useful for the serviceability limit state and the load capacity

• realistic prediction of stiffness and strength  > min

(serviceability limit state: by means of analytical approximation 

solution)

Cracked membrane model with rotating cracks

Compression field models



• The Cracked Membrane Model was validated with "all" 

known test data. (University of Toronto, University of 

Houston, Kajima Corp., etc.)

• Good correlation of strength and stiffness as well as the 

crack direction r,  for  > min

• Failure due to steel rupture (limited ductility) could be 

predicted in some cases. 
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Cracked membrane model with rotating cracks: Comparison with experiment: load-deformation behaviour

Compression field models



Fictitious, rotating, stress-free cracks vs real, interlocking cracks

• Unsatisfactory prediction for  < min , no convergence for uniaxial reinforcement

→ General cracked membrane model considers fixed, interlocking cracks

→ Most general solution for:

− Only one group of parallel cracks with equal distances over the entire element

− Reinforcement is considered as equivalent stress (constant over rebar spacing and membrane element thickness).
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Cracked membrane model with rotating cracks: Application limits / open questions

Compression field models



dt

d

dn

r

Membrane element Stresses at crack / equilibrium Displacements & strains

( )

( )

( )

2 2

2 2

sin cos sin 2

cos sin sin 2

sin cos cos(2 )

cnr ctr ctnr

cnr ctr ctnr

cnr ctr ctnr

r r r

r r r

r r r

z szr

x sx

z

rx

xz

= +  +  − 

= + 

  

  

  

  +  + 

= −  





 − 

  en
(c), et

(c), nt
(c) are independent of the 

coordinate t; thus nt
(c) /t = 0, i.e. 

et
(c)/n = 0 and et

(c) = constant

(en = u/n, et = v/t, nt = u/t + v/n)

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship
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cnr = cnr (dn, dt )
ctnr = ctnr (dn, dt )

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models



General solution method (for given crack inclination and spacing)

Assumption / estimation of 7 primary unknowns:

• 3 stress components at crack sxr, szr, ctr 

• 2 crack displacements (opening and slip) dn, dt

• 2 concrete displacements at the crack ucr, vcr

Determine the concrete stresses at the crack cnr, ctnr via the crack opening and slip
dn, dt using the aggregate interlock relationship cnr = cnr (dn, dt ), ctnr = ctnr (dn, dt ).

The bond stress as well as the stresses, strains, and displacements in the concrete 

and reinforcement are determined by means of the differential equilibrium and the 

compatibility conditions. This is done starting from the crack (n = sr /2), in infinitesimal 

steps dn going towards n = 0.

Iteration until the following conditions are met (7 equations for 7 unknowns):

• 3 equilibrium conditions at the crack

• 2 components of the concrete displacements uc, vc and 2 reinforcement 
displacements usx, usz must vanish in the middle between two cracks.
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Membrane element

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models



Lack of experimental data (measured directly, not biased by the measurement)

• Stresses in concrete cannot be measured experimentally (they are usually estimated by surface strains).

• Local measurements of the stresses in the steel with conventional instrumentation (e.g. with strain gauges, ...) depend on 

the location of the measurement (near or far from the crack). In addition, they usually disturb the bond.

→ The most commonly used relationships for tension stiffening and compression softening have been insufficiently validated 

with experiments.

→ Today, it is possible to measure the steel strains continuously along an embedded reinforcing bar using fibre optic strain 

sensing without disturbing bond; new insights from experimental testing of panels

• Crack kinematics (in particular the crack slip) are difficult to record with conventional instrumentation (unless the location of 

the cracks is known in advance); only limited experimental data are available.

• Push-off tests are not necessarily representative of aggregate interlock in biaxially reinforced elements.

→ Aggregate interlock relationship still needs to be validated.

→ Today, with 3D Digital Image Correlation (DIC) and Automatic Crack Detection & Measurement of their kinematics (ACDM) 

new insights into the behaviour are gained
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Cracked membrane model with fixed cracks: Application limits / open questions

Compression field models



Compatibility and deformation capacity of membrane elements: Summary
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Summary

• The Cracked Membrane Model (general formulation with aggregate interlock) requires (numerical) solving of seven highly 

nonlinear equations with seven unknown quantities: very complex

• Simplification with Cracked Membrane Model (without aggregate interlock) = combination of the classic compression field 

models with the tension chord model:

− Stress-free cracks parallel to the direction of the principal strains (variable crack direction, fictitious cracks)

− Tension stiffening effect of the concrete between the cracks according to the tension chord model

(without influence on resistance of reinforcement, indirect influence on ultimate load as strains become smaller

→ higher concrete compressive strength)

− Concrete compressive strength as a function of strain state (transverse strain)

• The Cracked Membrane Model (without aggregate interlock) generally provides good agreement with test results. In the 

serviceability limit state (elastic reinforcement), the analytical approximation solution can be easily applied.

• The consideration of the aggregate interlock (general formulation of the Cracked Membrane Model ) would make sense if 

the element is only reinforced in one direction or if the reinforcement ratio is very low in the other direction.



Annex
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Shear Panel Tester, University of Toronto (1979)
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In-plane loading (3 stress resultants)

Applied in-plane loads 

perpendicular and parallel to element edge

→ principal direction of applied loads variable

→ reinforcing bars parallel to element edges

Element size 890-890-70 mm



Shell Element Tester, University of Toronto (1984 / 2009)
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General loading (8 stress resultants)

Applied loads in-plane and out-of-plane,

perpendicular to element edge

→ principal direction of applied loads constant

→ reinforcing bars at angle to element edges

Element size 1,524-1,524-350 mm



Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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100 presses

each 1'400 kN

Load introduction

20 yokes, 20 blocks bolted to yokes

reinforcing bars with threaded ends

and bar couplers (e.g. Bartec )
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normal force
vertical

+22/-30 MN

normal force
horizontal

+22/-30 MN

shear 

±11 MN
(1,100 t)

Large Universal Shell Element Tester LUSET, ETH Zurich (2017)



Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Large Universal Shell Element Tester LUSET, ETH Zurich (2017)
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Equilibrium Material properties
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Compression field models

Cracked membrane model with rotating cracks: Consideration of tension stiffening and compression softening
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Exact solution

→ quadratic equation for maximum diagonal crack spacing sr0
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Maximum crack spacing for uniaxial tension in 

reinforcement direction: srx0, srz0 

(according to the tension chord model)

Geometric relationship between srx, srz and 

diagonal crack spacing sr

Parameters for crack distance l = 0.5...1:

(l = 1.0: max. crack distance sr = sr0

l = 0.5: min. crack distance sr = sr0 /2)

Principal stress c1 between two cracks:

τ

 fct
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σσr

Xcr
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at the 

crack

Compression field models

Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing



τ τ τ

Approximation (symmetric / antisymmetric part of the composite)

Closed form approximate solution for 

maximum diagonal crack distance sr0 :
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σσr
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Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing

Compression field models
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Cracked membrane model with rotating cracks: Determination of the maximum diagonal crack spacing

Compression field models



dt

d

dn

r

1

Total strains {e}: 

{e} = {e}(c) + {e}(r)
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Contribution to total strain:

• {e}(c) (average over sr) 

• {e}(r) (smeared over sr) 
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Total strains {e} = strains in concrete between cracks {e}(c) + strains due to crack kinematics {e}(r) 

Crack widths result from strains and 

diagonal crack spacing sr : 
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Cracked membrane model with rotating cracks: strains in cracked membrane elements

Compression field models



KS4
fc = 35.2 MPa
fy = 631 MPa

ft = 839 MPa
ρx =1.57% | ρy =1.04%

Ø = 16 mm
σx/τxz = σz/τxz = 0.0
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l=1.0

l=0.5

no tens. stiff. 

KS5
fc = 39.0 MPa

fy = 631 MPa
ft = 839 MPa
ρx =1.57% | ρy =1.04%

Ø = 16 mm
σx/τxz = σz/τxz = 0.4
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KS6
fc = 39.0 MPa
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Tests by Proestos (2014): membrane elements 1525-1525-355 mm under uniform load

KS4: pure shear KS5: shear and biaxial tension 

(proportional)

KS6: shear and biaxial

compression (proportional)

nonlinear

(numerical)

linear approx.

(analytical.)

14.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 59

Cracked membrane model with rotating cracks: Comparison with experiments: crack widths

Compression field models



Simplified solution method (for given crack inclination and spacing)

Approximate the local variation of the concrete strains en
(c), et

(c), nt
(c)  between the 

cracks based on the TCM

Assumption / estimation of 5 primary unknowns:

• Strains in concrete between two cracks {e}(c) = 3 unknowns)

• Strains due to crack kinematics {e}(r) = 2 unknowns (for known crack direction and 
distances, {e}(r) follows from crack opening and crack slip dn, dt )

Iteration until the following conditions are met (5 equations for 5 unknowns):

• 3 equilibrium conditions at the crack

• 2 aggregate interlock relationships cnr ({e}(c)) = cnr (dn, dt ), ctnr({e}(c)) = ctnr (dn, dt )

Despite the simplification of neglecting the variable concrete strains, the solution is
numerically challenging, since the crack interrelationship is highly non-linear and 
sensitive to small displacements. 

It was recently implemented successfully (Gehri 2018) and gives good results.

14.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 60

Membrane element

Required material properties:

• Constitutive relationships of 
concrete and reinforcement

• Bond-slip relationship

Cracked membrane model with fixed cracks: General solution, with aggregate interlock

Compression field models



Measured or calculated?

Determination of stress and strain state in experiments 

Equilibrium Compatibility Material properties
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sx, sz

−c3

ee



Measured or calculated?

Determination of stress and strain state in experiments with conventional measurements

Equilibrium Compatibility Material properties
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Measured or calculated?

Determination of stress and strain state in experiments with continuous strain measurement (fibres)

Equilibrium Compatibility Material properties
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