2 In-plane loading —
membrane elements

2.4 Equilibrium and yield conditions
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Learning objectives

Within this chapter, the students are able to:
= identify the relevance of membrane elements in structural concrete, and how they can be used to
design a more general shell structure.

= assess the equilibrium of reinforced concrete membrane elements as a combination of concrete and
reinforcement.

o combine the yield conditions of concrete and reinforcement to determine the yield conditions of
membrane elements with orthogonal reinforcement.

o distinguish and explain the different yield regimens.

o design membrane elements with orthogonal reinforcement either with yielding of both
reinforcements (regime 1) or with concrete crushing and yielding of the longitudinal reinforcement
(regime 2).

o lllustrate the behaviour of a membrane element with skew reinforcement and yielding of both
reinforcements (regime 1) by means of Mohr’s circles.
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Membrane elements - Introduction

Definition

The analysis of membrane elements presented in this chapter is valid for: f
- In-plane loaded elements I =X
- Homogeneously loaded (i.e. no variations of stresses) [ dx 1
- Homogeneously distributed reinforcing bars - steel and bond stresses || dz ‘l_’ &"

can be modeled by equivalent stresses uniformly distributed over the

thickness and in the transverse direction between the reinforcing bars .

———

Only very few structural elements fulfil these criteria and can be directly l . *

designed as a single membrane element. Why study this theoretical case?

The local behaviour of a plane structure subjected to a general loading (i.e. in-plane forces, bending moments, twisting
moments, and transverse shear) can be modelled by a combination of membrane elements (sandwich or layered
approaches). With numerical approaches, the behaviour of most structures can be modelled by the superposition of
membrane elements (see the following slide).
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Membrane elements - Introduction

Modelling of structures composed by plane elements Generally loaded shell element
(8 stress resultants)

Membrane
element

t+ Ngyo
|

Neyo

Membrane
element

[Seelhofer, 2009]

Aeyput Ry
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Membrane elements - Equilibrium

Equilibrium conditions

o, dx
T,,dX ? ‘
— - X
dz it [0)¢ @
T,,0Z q,dxdz|| (o, +o,,dx)dz

-~ dz —i—xb —
c,dz

q, dxdz (T, + T, dX)dz

l ’ r (t,, +7,,dz)dx
z (o, +0,,dz)dx

A stress component is taken as positive if it acts in a positive (negative)
direction on an element face where a vector normal to the face is in a
positive (negative) direction relative to the axis considered.

Positive membrane forces correspond to positive stresses
Indices: 1-direction of the stress, 2-direction of the normal vector

Equilibrium in directions x, z:

oo, Ot

+—=%4+0,=0
oX 0z
%4_%4_ qz — O
oX 01

Or in membrane forces
(o, T constant over membrane element
thickness h):

on, +%+h'qx =0
1) 0z
%+@+h.qz =0
OX 0z

(ﬂX:hGX n=hoc, n :hrxz)

zZ zZ Xz
With (moment condition M, = 0):

TZX - TXZ resp nZX - nXZ
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Membrane elements - Stress transformation

Stress transformation: Mohr's circle T

G
”?(w“)

T COSQ ?GZ COS @

P L —

T(p X
—

c,Sing
T, SINQ

7

G, =6,C08° @+a,Sin“ @+2t _sinpcose
o, =G, Sin° p+c,cos’ -2t SiNQCOSQ
1, =(c,—0c,)sinpcose+ 1, (Cos* @—sin® o)
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Membrane elements - Stress transformation

Stress transformation: Mohr's circle

i G Sin
TXZ Sln (p f Z (P TXZ COS(P ?GZ Cos(p

P L —

L c Sln(p
7, SINQ

'z
o,+0, O,—0, :
c, = 2 + > cos2¢+t,, SIN 2¢
C0S 2¢ = COS” p—Sin° ¢
_o6,+06, O©,—0C, 5 in 2 _
O == o C0S2e-T,SinZe 1=sin® ¢+cos® ¢
_ Sin2¢p = 2sin@Ccos ¢

%2 sin 2¢p+1,, COS2¢
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Membrane elements - Stress transformation

Stress transformation: Mohr's circle

i G Sin
TXZ Sln (p f Z (P TXZ COS(P ?GZ Cos(p

P L —

L c Sln(p
7, SINQ

7

Oo,+0O o,6,—0O .
G, =——=+—2—2%C0s2¢+1,,SIN2¢
2 2
o,+0O o,—0O .
o, =2 L + X 2cos2¢0—1,. SINn2
t (P Xz (P
2 2

%2 sin 2¢p+1,, COS2¢

Centre /

i
Radius Mohr's circle
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Membrane elements - Stress transformation

Stress transformation: Mohr's circle

Advanced Structural Concrete

Information Sheet: Mohr’s Stress Circle

parallel to surface
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Membrane elements - Equilibrium

Equilibrium («reinforced concrete = concrete + reinforcement»)
Orthogonally reinforced element (reinforcement directions x, z):

« Concrete is homogeneous and isotropic, absorbs compressive stresses < f_ in any direction
but no tensile stresses

* Reinforcement only carries forces in the direction of the bar, up to a maximum value f, and is distributed and anchored in
such a way that equivalent distributed stresses can be expected

« Perfect bond between concrete and reinforcement f
7 =1 1
In membrane forces: Ny = Nye T Nyg = Ny + A Oy K 115!3;?51 n,
— — “ A° A 10|
Ny = Ny + Nys = Nge + As7057 = ;Hff ; E
Nyz = Nyze + Nyzs = Nyze 1T Mo h
(ny = hoy, n, =ho, Ny, = hty,) n, * n,,
Zy
In equivalent stresses: Ox = Oxc T PxOsyx ,rf =] X
Oz = Ozc + Pz0s2 3 If;r | Oy
Txz = Txze ‘ A1 /qr(_'scs L_"
= #I,f
; . = T
(reinforcement ratios p, = a,, /h, p, = a,,/h) ol IS 2

=
Zlo_z * Tz
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Membrane elements - Equilibrium

Equilibrium («reinforced concrete = concrete + reinforcement»)
Orthogonally reinforced element (reinforcement directions x, z):

Representation with Mohr’s circles (straightforward for orthogonal reinforcement, since t,,, = 0):

T
X T X
/0‘=\ Px Osx Aa\

o IS i X in concrete loading
3 I;’Jf L o,
- F,fl;q.( G L——- .
I_r‘
— F#I:f Tox
e |
Q Z Ly Qr
G, =06, +p,0, =0,C08 a+p,G
B _ . o
;, =0, +P, 04 = GO¢3 S'n_ a+p,0 X, z: directions of reinforcement, behaviour
T, = Tipe = —0_SINACOS not isotropic (also not for a,, = ay,)!

o: Principal direction of concrete compression

07.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete
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Membrane elements - Equilibrium

In-class exercise
Given a membrane element under the following conditions:
« Loading: 6, = -2 MPa, o, =5 MPa, 1., = 5 MPa

* Reinforcement: f, = 435 MPa, p, = 1.3%, p, = 1.9%

What is the minimum concrete strength f,, you need to choose for the element to carry the loads?
What is the inclination of the occurring cracks?
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Membrane elements - Yield conditions

Yield conditions of Tresca and v. Mises for plane stress conditions

Tresca

O3
e —
} fs
=t X Y
- o, /,
/O\ 3 ||—m=
o, T, — fg! 74P
— | /
* T :
GZ ‘k ‘(/
z Zd

Tresca~<

von Mis

Max(|o:|,|os],|or — o)) - f, =0
- Principal stress plane: hexagon

- Space: two elliptical cones and connecting elliptical cylinder

v. Mises
2 2 | 7
o, —0,0,+0, 43T

2 —
Xz

f2=0

- Principal stress plane: ellipse circumscribed by the Tresca hexagon

- Space? Ellipsoid circumscribed by the yield condition of Tresca

07.11.2024
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Membrane elements - Yield conditions

Yield condition for orthogonally reinforced membrane elements f n =n_+n
. . . X XC XS
(«Reinforced concrete = concrete + reinforcement»): 3a ,ﬁiiﬁﬂf =N, +a,o,,
] n
. ~— rl-:ﬁ/ é _"’x nz = r]zc + nzs
Membrane thickness h e 1c3 _
. .. ? = nzc + aSZGSZ
Concrete and steel perfectly plastic, perfect (rigid) bond s el e N
Replace designations f_ and f, (tension) or f,' (compression) at l ny M v
design with f, =k  fq and f, = - f,' =1,
Yield condition reinforcement: Yield condition concrete:
(absorbs only forces in its direction) (homogeneous, isotropic, with f., = 0)

nxzs '\ n

Xzc |

/
—f/ <o, <A,

hf._,
a'SZ fS,Z
XS / aSZ fSZ n

’/ XC

af a_f.!

SX ~SX SX " SX

n nzc

Z8
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Membrane elements - Yield conditions

Yield condition for orthogonally reinforced membrane elements f n =n_ +n
Geometric linear combination concrete + reinforcement o 7 17 ' — nXC + ast
ﬂ XC SX 7 SX
nZ = nZC + nZS
= IF]ZC + a'SZ(SSZ
rIXZ = XzC
Procedure:

07.11.2024

Move the yield surface Y, = 0 with its
origin along yield surface Y, =0

(or vice versa Y, =0 along Y, =0)
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Membrane elements - Yield conditions

Yield conditions / yield regimes reinforced concrete

Linear combination of the yield conditions, i.e. shifting the yield condition
of the concrete (origin) along the yield condition of the reinforcement.

«reinforced concrete = steel + concrete»

Yl _(asx x N )(asz sz ) =

Y2 = nxz _(hf _asz e TN )(asz sz _nz) -

Y3:nfz_(asx o N )(hf Agy sx
Y4=n2 —(hf,/2) =

+n,) =

Y, =n2 +(a,f.+n)(hf +a_ f+n) =
Y6=nxz+(hf +a,f,+n)(a,f,+n,) =0
2
Y, =n,—(hf, +a,f, +n)(hf +a,f, +n) =0
SN: Reinforcement areas per unit length in x- and z-direction a, = A, /S, a,=A,/S, Y

07.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete
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Membrane elements - Yield conditions

Yield conditions / yield regimes reinforced concrete

Y,: Both reinforcements yield in tension
(Osx =Tsxo 05, =Tz 0 2 05 2 -f)

Y,: z-reinforcement yields in tension, concrete crushes
(05, =fsz) O3 =-fo, -Fx S 05 =1

Y, Xx-reinforcement yields in tension, concrete crushes n. 7~ XN
(Gsx - 1:sx’ O3 = 'fc’ -f ’sz S0y S 1:sz) \
r]Z
\ 6 7
3
\ .
nXZ' 5
- O,
n, | \ 2 \
] ] ] T "
SN: failure type: very ductile / ductile (except for very flat stress field inclinations) / z
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Membrane elements - Yield conditions

Strain increments and principal compressive direction

Strain increments are proportional to the components of the outer normal to the yield surface (gradient) in the
respective point of the yield surface (x = 0: any factor):

: oY
&, =K—,

X

: oY
€, =K—,
on on,

oY

Ve =K

on,,

Inclination a of the principal compressive direction 3 with respect to the x-axis follows from the Mohr's circle of
plastic strain increments (principal strain direction = principal compressive direction in concrete):

cot2a = i

Te

e )
X mit coto=

cos(2a) +1
sin(2a)

. . . . 2
coto =2 Sx (82,_?“} +1
YXZ YXZ

07.11.2024

’YXZ/Z

= cot(2a) + \/

y/2 A

cos”(2a) +sin’(2a)

sin®(2a.)

N =<

w

(8]

(o))

Y
< < <X <X < <

~

~/

:cot’ a = —(hf_ +a

SX SX
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cot’a=(a,f,—n)/(a,f,—n,)

.cot’ = (hf, —a, f, +n,)/(a,f,—n)

cot a=(a, f, —n)/(hf,—a, f, +n)

cot’ o =1

cot’ a=—(a, f. +n)/(hf +a, f. +n)

:cot’ a=—(hf, +a, f SZ+n )/(a, f., +n)
- +n)/(hf, +a,f.

+n,)

Sz Sz
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Membrane elements - Yield conditions

Dimensioning of reinforcement

Design practice: Usually Regime 1 (ductile failure type; both reinforcements yield before concrete crushing, concrete remains
“elastic” = undamaged).

Yield condition for Regime 1 in parametric form (— direct dimensioning): B te =0, “‘|ni|.‘
Y,=n-(a,f, -n)@a,f,—n)=0 T 4
— cote a, f, =n, +kn,| T
a, f, >n, +k™|n,| In,,|=const -
Yield condition in Regime 1 is governing (no concrete crushing) if: cotor =05l ;
hf,>a,f, +a,f,—(n +n,) cota = 2.0~

SN:
— Value of f_ see next chapter. Approximation according to SIA 262: f_= k, f,4 (with k.= 0.55)

— Inclination of the concrete stress field in Regime 1 follows from: cot’a=(a,f, -n)/(a,f,-n,)

— Value k = cot a can theoretically be freely chosen, in design standards often limited by the condition 0.5 < k <2

— Use of k=1, i.e. a=45°: "linearised yield conditions", implemented in many FE programs. Safe dimensioning, but this is
just one of many possibilities (possibly strongly on the safe side)
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Membrane elements - Yield conditions

Web crushing (Regime 2)

If the condition hf, > a, f, +a, f, —(n, +n,) is not satisfied, a failure
type where the concrete fails under compression (crushes) is governing.

Regime 2 is also of particular practical relevance. It applies if the
conditiona, f, —n >a,f,—n, ismet.

SX " SX Sz " SZ

— Type of failure: Yielding of the z-reinforcement with simultaneous
concrete compressive failure, called web crushing.

— The corresponding limitation of the shear resistance of the membrane
element can be represented as a quarter circle.

— Limitations for cot a correspond to straight lines in the diagram

SN: Figure on the right = projection of the yield surface to the plane (n,,
n,,), shifted by ag, f,, (n, = generalised reaction)

Xz

hf_/2

Regime 2

Regime 4
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Membrane elements — Yield conditions

In-class exercise

Given a membrane element under the following conditions:
« Loading: 6, = -2 MPa, o, =5 MPa, 1., = 5 MPa

« Concrete: k. f.4 = 11 MPa

* Reinforcement: f_, = 435 MPa

What is a possible reinforcement ratio, p, and p,, for the element to carry the loads?

Are other ratios possible?
To which yield regime do the chosen ratios belong?

07.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete
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Membrane elements - Yield conditions

Skew reinforcements

Calculation of the equivalent orthogonal reinforcement (representation with Mohr’s circles)

2 2 T .
L m : reinforcement equivalent
Crs.s "2 4 Zpk RAN \/{Zp" fos 005(2v) j J{Zp" Fo Sm(zw")j } in x direction orthogonal
k=l reinforcement

reinforcement

f n 2 : A
Zpk syk si \Ifk In n direction

tan (2(pS ) -
Zpk fsyk COS(ZWk )
k=1 3X
= O
(see dissertation Seelhofer, 2009) 1
1
AN \\\\
1 A\N X
X
\l \ n
y
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Membrane elements - Yield conditions

Skew reinforcements

Graphical determination of the equivalent orthogonal reinforcement

1
t———
\\\\ |
reinforcement 1 I\ gy X equivalent
T in x direction A\ o T orthogonal
A N\ Qw‘ ° A reinforcement
A n
T X g X
' y X,
3, oy S L, o _3=3 35/\11 \1X 1
y W
\4 \J O
Q, Y,
reinforcement
in n direction
. PO . ' PnOen ‘ (see dissertation Seelhofer, 2009)
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Membrane elements - Yield conditions

Skew reinforcements

Graphical determination of the equivalent orthogonal reinforcement

1
|
\\\\ |
reinforcement 1 N g X equivalent
T in x direction AN o T orthogonal
A N Qw‘ ° A reinforcement
\J n
y
T
Nl L
3x 1x o + 3n lh -0 — 3x — 3n 35 lh 1x L:I‘s> c
1
\4 Y U
Q Y, Y -
reinforcement
in n direction
' PO . ' PO i (see dissertation Seelhofer, 2009)
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Membrane elements - Yield conditions

Skew reinforcements

Equilibrium (« = concrete + reinforcement»)
equivalent

T orthogonal
A reinforcement

1

|
N "
1 - -G
AVA¢
‘ n
y

(see dissertation Seelhofer, 2009)

07.11.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete

25



Membrane elements - Yield conditions

Skew reinforcements

Equilibrium (« = concrete + reinforcement»)

equivalent
orthogonal
reinforcement

. _ S
|
/) Xc
FSSA\N N
N 3.
1 " N\ =X ¢ > O
NV _ stresses X
S in concrete
- Q

(see dissertation Seelhofer, 2009)
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Membrane elements - Yield conditions

Skew reinforcements

With skew reinforcements, the determination of the yield conditions becomes mathematically significantly
more complicated. For Regime 1, for example, the yield condition becomes:

Y, = (rxy —p, f,sin ‘VCOS\I/)Z —(px f+p,f, cos’ w—cx)(pn f_ sin’ \|!—Gy)= 0

>0 >0 . =0,SiNy +G, COSy coty —2t,, COSy
With loads transformed to skew coordinates, the relationships for the direct design o,
of the reinforcement in Regime 1 follow from: On = siny
= [cos y +siny cot 6| Tey = Tye =Ty — Oy COLY
1 1 &
==X
p > I ) v
o} fSX 2 Sinw(Gé'*‘k‘T;m‘) Pn fsn = Sinw(sn—*—k ‘Tin‘ WPy \ \
y n
and for checking the concrete compressive strength: 1 - \L\ \ \A\'——
1
6.0 = ——[ 22, cosw—|e | (k+ k1) > -1, \ I
siny \ \Tan
Gﬂ

(see dissertation Seelhofer, 2009) y n,m
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Skew reinforcements

v x
\ k
v ﬁipks
\k
v,
X
WPk

\k

¥
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Membrane elements - Yield conditions

| ’Cx}

Pr foyicos? Wy

/ﬁfkfg1kcos V.

pkfnk sin W;(

.y Py fovi sin® Wy

- P, Jg_mcosz‘lf
p\fj;'_vx'l' p”];],-n COSQW

/ prfs_vx_ pnfs_vfi'coszw
T ~\P,(fiyx+ P, foncos> Y

2P, fymsin 2y

(from dissertation Seelhofer, 2009)
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Membrane elements - Yield conditions

Skew reinforcements

— Two obliqgue = skew reinforcement layers: flat,
parallelogram-shaped yield figure of the reinforcement,
inclined relative to the c,-c5—plane.

— Three oblique = skew reinforcement layers:
Parallelepiped, can carry load without concrete
(imagine a hinged connection of reinforcing bars)

— Yield surface of a reinforced concrete membrane
element results from translation of the concrete yield
surface with its origin on the yield surface of the
reinforcement (geometric linear combination)

Alternatively, n inclined reinforcements can be
transformed to the orthogonal x-z coordinate system to
determine an equivalent orthogonal reinforcement. The
yield conditions of the orthogonal reinforcement can then
be used, whereby the applied stress is to be transformed
into the direction of the equivalent orthogonal
reinforcement.

(see dissertation Seelhofer, 2009)
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i

|

O

f_sin®y

n -sn

}
P
|
p.f.sin®y
{

n "sn

—| |=2p_f_cos®y
- ~ p, o + P, Fin COS*

(from dissertation Seelhofer, 2009)

2
— +47
2 ., +0C \/(Gsx Gsy) Sxy
Gy = 04 COS*y, SX2 Z+ )
i

21
T
2 G, — Oy

SX

2
Gsx - chi Cos \Vi
i

=12
cSsy = ZGsi sin \Vi
i

Tsxy - chi Sin \Vi COS\Vi
i
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Membrane elements - Yield conditions

(@) f b) © W2
Summary 0 I v g
3 - | 7 f"

— «Reinforced concrete = steel + concrete» "1;’" ’Of/‘jﬂlv_' 7 a
— Well suited for design on the basis of FE calculations l"r —(—,,n R At e

(limit values) ! ot/ e
— Dimensioning for Regime 1, verification of the " (f;"‘

.. . . 2
prerequisites (no concrete crushing, compressive "

strength, see compabtibility and deformation capacity)

— Safe design possible with linearised yield conditions

— Regime 2 important for beams, "web crushing failure".

— Skew reinforcements can be treated in the same way (but : ", % -
mathematically more complicated) ©® afn (h) (i)
;y // //
I/
A '
|n.| =const s
cot®0=0.5 ./ S TScot@=2 .-
¥ !‘}——-————--— .

cot6=2.0 "':5 T cot0=0.5 A S A

h_lfc/2 aﬂfyz—nz n,
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