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2.4 Equilibrium and yield conditions



Learning objectives
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Within this chapter, the students are able to:

▪ identify the relevance of membrane elements in structural concrete, and how they can be used to 

design a more general shell structure.

▪ assess the equilibrium of reinforced concrete membrane elements as a combination of concrete and 

reinforcement.

o combine the yield conditions of concrete and reinforcement to determine the yield conditions of 

membrane elements with orthogonal reinforcement.

o distinguish and explain the different yield regimens.

o design membrane elements with orthogonal reinforcement either with yielding of both 

reinforcements (regime 1) or with concrete crushing and yielding of the longitudinal reinforcement 

(regime 2).

o illustrate the behaviour of a membrane element with skew reinforcement and yielding of both 

reinforcements (regime 1) by means of Mohr’s circles.



Membrane elements - Introduction
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Definition

dz

x

z

The analysis of membrane elements presented in this chapter is valid for:

- In-plane loaded elements

- Homogeneously loaded (i.e. no variations of stresses)

- Homogeneously distributed reinforcing bars → steel and bond stresses 

can be modeled by equivalent stresses uniformly distributed over the 

thickness and in the transverse direction between the reinforcing bars

Only very few structural elements fulfil these criteria and can be directly 

designed as a single membrane element. Why study this theoretical case?

The local behaviour of a plane structure subjected to a general loading (i.e. in-plane forces, bending moments, twisting 

moments, and transverse shear) can be modelled by a combination of membrane elements (sandwich or layered 

approaches). With numerical approaches, the behaviour of most structures can be modelled by the superposition of 

membrane elements (see the following slide).
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Modelling of structures composed by plane elements Generally loaded shell element 

(8 stress resultants)

=

+

Membrane 

element

Membrane 

element
[Seelhofer, 2009]
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Equilibrium conditions

Equilibrium in directions x, z:

Or in membrane forces 

(σ, τ constant over membrane element

thickness h):

With (moment condition My = 0):

resp.

A stress component is taken as positive if it acts in a positive (negative) 

direction on an element face where a vector normal to the face is in a 

positive (negative) direction relative to the axis considered.

Positive membrane forces correspond to positive stresses

Indices: 1-direction of the stress, 2-direction of the normal vector
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Stress transformation: Mohr's circle
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Stress transformation: Mohr's circle
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Stress transformation: Mohr's circle 
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Stress transformation: Mohr's circle
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Equilibrium («reinforced concrete = concrete + reinforcement»)

Orthogonally reinforced element (reinforcement directions x, z):

• Concrete is homogeneous and isotropic, absorbs compressive stresses ≤ fc in any direction
but no tensile stresses

• Reinforcement only carries forces in the direction of the bar, up to a maximum value fs and is distributed and anchored in 
such a way that equivalent distributed stresses can be expected

• Perfect bond between concrete and reinforcement 

In membrane forces:

In equivalent stresses:

(reinforcement ratios ρ𝑥 = 𝑎𝑠𝑥 /ℎ, ρ𝑧 = 𝑎𝑠𝑧 /ℎ)
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Equilibrium («reinforced concrete = concrete + reinforcement»)

Orthogonally reinforced element (reinforcement directions x, z):

Representation with Mohr’s circles (straightforward for orthogonal reinforcement, since xzs = 0):

a: Principal direction of concrete compression
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Membrane elements - Equilibrium
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x, z: directions of reinforcement, behaviour 

not isotropic (also not for 𝑎𝑠𝑥 = 𝑎𝑠𝑧)!
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In-class exercise

Given a membrane element under the following conditions:

• Loading: x = -2 MPa, z = 5 MPa, xz = 5 MPa

• Reinforcement: fsd = 435 MPa, x = 1.3%, z = 1.9%

What is the minimum concrete strength fc,  you need to choose for the element to carry the loads?

What is the inclination of the occurring cracks?

Membrane elements - Equilibrium
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Tresca

- Principal stress plane: hexagon

- Space: two elliptical cones and connecting elliptical cylinder

v. Mises

- Principal stress plane: ellipse circumscribed by the Tresca hexagon

- Space: Ellipsoid circumscribed by the yield condition of Tresca

Membrane elements - Yield conditions
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Yield conditions of Tresca and v. Mises for plane stress conditions
(not suitable for reinforced concrete, not even for "isotropic reinforcement"!)
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Yield condition for orthogonally reinforced membrane elements

(«Reinforced concrete = concrete + reinforcement»):

Membrane thickness h

Concrete and steel perfectly plastic, perfect (rigid) bond

Replace designations fc and fy (tension) or fy' (compression) at 

design with fc = kc fcd and fy = - fy' = fsd

Yield condition reinforcement: Yield condition concrete:

(absorbs only forces in its direction) (homogeneous, isotropic, with fct = 0)
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Yield condition for orthogonally reinforced membrane elements

Geometric linear combination concrete + reinforcement

Procedure: 

Move the yield surface Yc = 0 with its 

origin along yield surface Ys = 0

(or vice versa Ys = 0 along Yc = 0)

𝑛𝑥

𝑛𝑧𝑥

𝑛𝑥𝑧𝑛𝑧
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Yield conditions / yield regimes reinforced concrete

Linear combination of the yield conditions, i.e. shifting the yield condition 

of the concrete (origin) along the yield condition of the reinforcement.

«reinforced concrete = steel + concrete»
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Yield conditions / yield regimes reinforced concrete

Y1: Both reinforcements yield in tension
(sx = fsx, sz = fsz, 0 ≥ c3 ≥ -fc)

Y2: z-reinforcement yields in tension, concrete crushes
(sz = fsz, c3 = -fc, -f’sx ≤ sx ≤ fsx) 

Y3: x-reinforcement yields in tension, concrete crushes
(sx = fsx, c3 = -fc, -f’sz ≤ sz ≤ fsz)

Y4: Concrete crushes
(c3 = -fc, -f’sx ≤ sx ≤ fsx, -f’sz ≤ sz ≤ fsz)

Y5: x-reinforcement yields in compression, concrete crushes
(sx = -f’sx, c3 = -fc, -f’sz ≤ sz ≤ fsz)

Y6: z-reinforcement yields in compression, concrete crushes
(sz = -f’sz, c3 = -fc, -f’sx ≤ sx ≤ fsx)

Y7: Both reinforcements yield in compression, concrete crushes
(sx = -f’sx , sz = -f’sz, c3 = -fc)

(mean concrete principal stress also negative)

SN: failure type: very ductile / ductile (except for very flat stress field inclinations) / brittle
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Strain increments and principal compressive direction

Strain increments are proportional to the components of the outer normal to the yield surface (gradient) in the 

respective point of the yield surface (k ≥ 0: any factor):

Inclination α of the principal compressive direction 3 with respect to the x-axis follows from the Mohr's circle of 

plastic strain increments (principal strain direction = principal compressive direction in concrete):

Membrane elements - Yield conditions
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Dimensioning of reinforcement

Design practice: Usually Regime 1 (ductile failure type; both reinforcements yield before concrete crushing, concrete remains 

“elastic” = undamaged). 

Yield condition for Regime 1 in parametric form (→ direct dimensioning):

Yield condition in Regime 1 is governing (no concrete crushing) if:

SN:

→ Value of fc see next chapter. Approximation according to SIA 262: fc = kc fcd (with  kc = 0.55)

→ Inclination of the concrete stress field in Regime 1 follows from: 

→ Value k = cot α can theoretically be freely chosen, in design standards often limited by the condition 0.5 ≤ 𝑘 ≤ 2

→ Use of k = 1, i.e. α = 45°: "linearised yield conditions", implemented in many FE programs. Safe dimensioning, but this is 

just one of many possibilities (possibly strongly on the safe side)
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Web crushing (Regime 2)

If the condition                                                 is not satisfied, a failure 

type where the concrete fails under compression (crushes) is governing.

Regime 2 is also of particular practical relevance. It applies if the 

condition                                      is met.

→ Type of failure: Yielding of the z-reinforcement with simultaneous 

concrete compressive failure, called web crushing.

→ The corresponding limitation of the shear resistance of the membrane 

element can be represented as a quarter circle.

→ Limitations for cot α correspond to straight lines in the diagram

SN: Figure on the right = projection of the yield surface to the plane (nz, 

nxz), shifted by asz fyz (nx = generalised reaction)
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In-class exercise

Given a membrane element under the following conditions:

• Loading: x = -2 MPa, z = 5 MPa, xz = 5 MPa

• Concrete: kc∙fcd = 11 MPa

• Reinforcement: fsd = 435 MPa

What is a possible reinforcement ratio, x and z, for the element to carry the loads?

Are other ratios possible?

To which yield regime do the chosen ratios belong?

Membrane elements – Yield conditions
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Skew reinforcements

Calculation of the equivalent orthogonal reinforcement (representation with Mohr’s circles)
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Membrane elements - Yield conditions

Skew reinforcements

Graphical determination of the equivalent orthogonal reinforcement
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(see dissertation Seelhofer, 2009)
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(see dissertation Seelhofer, 2009)
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(see dissertation Seelhofer, 2009)
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Skew reinforcements

With skew reinforcements, the determination of the yield conditions becomes mathematically significantly 

more complicated. For Regime 1, for example, the yield condition becomes:
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With loads transformed to skew coordinates, the relationships for the direct design 

of the reinforcement in Regime 1 follow from:

and for checking the concrete compressive strength:
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(see dissertation Seelhofer, 2009)
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Skew reinforcements

(from dissertation Seelhofer, 2009)
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Skew reinforcements

→ Two oblique = skew reinforcement layers: flat, 

parallelogram-shaped yield figure of the reinforcement, 

inclined relative to the sx-sy–plane.

→ Three oblique = skew reinforcement layers: 

Parallelepiped, can carry load without concrete 

(imagine a hinged connection of reinforcing bars)

→ Yield surface of a reinforced concrete membrane 

element results from translation of the concrete yield 

surface with its origin on the yield surface of the 

reinforcement (geometric linear combination)

Alternatively, n inclined reinforcements can be 

transformed to the orthogonal x-z coordinate system to 

determine an equivalent orthogonal reinforcement. The 

yield conditions of the orthogonal reinforcement can then 

be used, whereby the applied stress is to be transformed 

into the direction of the equivalent orthogonal 

reinforcement. 

(see dissertation Seelhofer, 2009)
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Summary

→ «Reinforced concrete = steel + concrete»

→ Well suited for design on the basis of FE calculations

(limit values)

→ Dimensioning for Regime 1, verification of the

prerequisites (no concrete crushing, compressive

strength, see compabtibility and deformation capacity)

→ Safe design possible with linearised yield conditions

→ Regime 2 important for beams, "web crushing failure".

→ Skew reinforcements can be treated in the same way (but 

mathematically more complicated)


