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2.3 Compatibility and deformation capacity



Learning objectives
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Within this chapter, the students are able to:

▪ determine the behaviour of concrete as a function of the compressive strength and the cracking state.

▪ recognise the assumption of limit analysis methods for the materials having sufficient deformation 

capacity to reach the plastic solution without rupturing, and the existence of approaches to verify the 

deformation capacity of the materials.

▪ evaluate plastic redistributions of internal forces in hyperstatic systems (beams and frames) 

subjected either to external loads or imposed deformations, and calculate the deformation demand in 

elements subjected to bending or normal actions.

▪ estimate the deformation capacity of a structure subjected to bending or normal actions.

o explain the tension-stiffening effect and how it affects the structural behaviour.

o illustrate the main assumptions and behaviour of bonded reinforcement according to the Tension 

Chord Model.
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2.3 Compatibility and deformation capacity

A) Behaviour of concrete in compression



Main factors influencing the equivalent strength to be considered in plastic calculations

Strain softening after peak strength (material effect)

Influence of transverse cracking on concrete strength (structural effect)

Behaviour of concrete in compression
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The concrete brittleness (i.e. relative 

amount of softening) increases with 

the compressive strength and also 

the reduction of the strength to be 

accounted for (fc).
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Reduction factor to account for 

this effect (kc) can be determined 

in a more refined manner based 

on the state of deformations (see 

following slides).
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Dependence of the concrete compressive strength and shear resistance on the strain state

Tests have shown that the compressive strength in 

membrane elements is reduced by (imposed) transverse 

strains.

In 1986, Vecchio and Collins proposed reducing the 

compressive strength by a factor                             

(assuming “average" concrete stresses).

This also takes implicitly other effects into account.

In 1998, Kaufmann proposed to consider additionally the 

(already known) inversely proportional increase of the 

compressive strength with the cylinder compressive strength:

On the basis of this and other work, SIA 262 has 

introduced the following coefficient for the verification of 

webs of beams:

Behaviour of concrete in compression
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This can be applied in a more general 

way to any structural member when 

removing the 0.65 upper-bound



Behaviour of concrete in compression

Concrete compressive strength and shear resistance as a function of the strain state
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Behaviour of concrete in compression

Concrete compressive strength and shear resistance as a function of the strain state

→ kc·fc is largely reduced for flat inclinations of the compression field and for plastic strains of the tension chord
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Behaviour of concrete in compression

Concrete compressive strength and shear resistance as a function of the strain state

→ kc·fc is largely reduced for flat inclinations of the compression field and for plastic strains of the tension chord

→ Concrete compressive stresses increase sharply with flat inclinations (see above)

→ Very flat inclinations do not make sense when dimensioning, but are often necessary when assessing old bridges

→ Attention to plastic internal force redistributions from the support (= large shear force)
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2.3 Compatibility and deformation capacity

B) Behaviour of bonded reinforcement



Differential equations of bond

General bond-slip law

Simplified bond-slip law, used in TCM 

Behaviour of the bonded reinforcement – Tension chord model (SBI)
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Equilibrium of an element with length dx:

→ ODE of 1st order

Considering linear elastic material behaviour:

→ ODE of 2nd order
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Considering linear elastic material behaviour:

→ quadratic (integrate twice)
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Behaviour of the bonded reinforcement – Tension chord model (SBI)
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Concrete stress in the middle of the element with length 𝑠𝑟0 (maximum 

crack spacing) is 𝜎𝑐 = 𝑓𝑐𝑡𝑚 i.e. another crack could form there. 

Thus the minimum crack spacing is:

𝑠𝑟,𝑚𝑖𝑛 = 𝑠𝑟0/2

Generally, the crack spacing varies with parameter :

𝑠𝑟 = λ ∙ 𝑠𝑟0
1

2
< λ < 1

→ Theoretical limits of the crack spacing with fully developed crack 

pattern!

SN: If the cracks form because of applied loads, the fully developed 

crack pattern forms at once (theoretically).

View of a tension chord (total cross-section Ac), reinforced with bar with diameter Ø ([6], page 3.5f)
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Increase of normal force after crack formation N > Nr ([6], page 3.5f )

Concrete stresses remain constant after cracking.

Steel stresses keep increasing.

Mean concrete elongation

𝜀𝑐𝑚 =
0
𝑠𝑟 𝜀𝑐 𝑑𝑥

𝑠𝑟
=

0
𝑠𝑟𝜎𝑐
𝐸𝑐

𝑑𝑥

𝑠𝑟
=

𝜆𝑓𝑐𝑡𝑚

2𝐸𝑐

Concrete displacements

𝑢𝑐 𝑥 = න
0

𝑥

𝜀𝑐 𝑥 𝑑𝑥 = න
0

𝑥 𝜎𝑐 𝑥

𝐸𝑐
𝑑𝑥

𝑢𝑐𝑟 = 𝑢𝑐 𝑥 =
𝑠𝑟
2
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Concrete stresses remain constant after cracking.

Steel stresses keep increasing.

Mean steel elongation

𝜀𝑠𝑚 =
0
𝑠𝑟 𝜎𝑠
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Steel displacements
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2

Increase of normal force after crack formation N > Nr ([6], page 3.5f )
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Concrete stresses remain constant after cracking. Steel stresses

keep increasing. 

Steel elongation at crack Average concrete elongation

𝜀𝑠𝑟 = Τ𝜎𝑠𝑟 𝐸𝑠 𝜀𝑐𝑚 = Τ𝜆𝑓𝑐𝑡𝑚 2𝐸𝑐

Mean steel elongation
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𝜎𝑠𝑟
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−
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Crack widths: Difference of the mean steel and concrete strains 

multiplied by sr ( = 0.5...1):

𝑤𝑟 = 𝑠𝑟
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−
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N-- and σsr--diagrams : Reduction of the elongation of the 
bare steel by  
( remains constant until yielding).

NB: Good approximation for wr (small )
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Increase of normal force after crack formation N>Nr ([6], page 3.5f )
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Behaviour of the bonded reinforcement – Tension chord model (SBI)
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sy sr suN N N N = 

Crack element at crack formation Ny ≤ N ≤ Nu

Behaviour of the bonded reinforcement – Tension chord model (SBI)
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sy sr suN N N N = 

Crack element at crack formation Ny ≤ N ≤ Nu

Behaviour of the bonded reinforcement – Tension chord model (SBI)
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Closed form solution for a bilinear steel stress-strain relationship
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Constitutive relationship of the bonded reinforcement (tension chord model with bilinear bare reinforcement):
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Load-deformation behaviour considering bond 

(influence at high loads)

→ No influence on tensile resistance

→ Stiffer behaviour than bare steel

Ratio of average elongation to maximum elongation at 

the cracks considering bond

→ Heavy drop after onset of yielding

→ Pronounced influence on ductility!

serviceability behaviour

(previously considered)

onset of

yielding
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Application to loading cases different than uniaxial tension

Simple bending (SB I): Elastic bending stiffness – tensile stiffness [6], page 2.16f

𝑠𝑟/2 𝑠𝑟/2

λ ∙ 𝑓𝑐𝑡

σ𝑠𝑟

Setting the steel stress at the crack at the onset of cracking (M = Mr)

equal to the steel stress at cracking of a tension chord

one obtains the equivalent reinforcement ratio eff :
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Tension stiffening for non-stabilised crack patterns (pull-out model)

for <cr0.6% → Reinforcement is NOT able to carry the cracking load without yielding and the 

tension chord model is not applicable. Cracks are controlled by other reinforcement and a stabilized 

crack pattern is not generated.

▪ A pull-out tension stiffening 

model can be formulated for 

these situations by assuming 

(a) independent cracks and 

(b) the same bond slip model 

as for the tension chord 

model. 

▪ A certain crack spacing (lavg) 

should be assumed to 

compute the average 

reinforcement strain.
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2.3 Compatibility and deformation capacity

C) Deformation capacity of beams



Beams – Deformation capacity
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Limitation of the compression zone depth according to SIA 262
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Maximum reinforcement ratio and bending resistance according to SIA 262, section 4.1.4.2:

(for components mainly subjected to bending)

• x/d ≤ 0.35: Internal force redistributions without verification of deformation capacity
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Limitation of the compression zone depth according to SIA 262

s sdA f

d h

sm

2 0.003c d =

0 0

0.35

.5x d

x d

=

= 2

2

0.85 0.35 0.298

0.298

( 0.65 / 0.35 5.6‰

  thus / )

0.85 0.50 0.425

0.425

( 0.5 / 0.5 3.0‰

thus / ) 

sm c d

sm c d

sr sd

sd s

s

sr

d d

d d

f

f

E

E

  =

→  

  =

 =  =

 

→  

 =  


0.85x
= d



Maximum reinforcement ratio and bending resistance according to SIA 262, section 4.1.4.2:

(for components mainly subjected to bending)

• 0.35 ≤ x/d ≤ 0.5: Internal force redistributions with verification of deformation capacity
2 2/ 0.50 0.425 (1 2) 0.335Rd cd cdx d M bd f bd f →   →   −  = 
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Limitation of the compression zone depth according to SIA 262

s sdA f

d h

sm

2 0.003c d =



0.50x d

Maximum reinforcement ratio and bending resistance according to SIA 262, section 4.1.4.2:

(for components mainly subjected to bending)

• x/d > 0.50: is to be avoided 

0.85x
= d

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete



Beams – Deformation capacity

17.10.2024 29

Limitation of the compression zone depth according to SIA 262

d h



0.50x d

Maximum reinforcement ratio and bending resistance according to SIA 262, section 4.1.4.2:

(for components mainly subjected to bending)

• x/d ≤ 0.35: Internal force redistributions without verification of deformation capacity

• 0.35 ≤ x/d ≤ 0.5: Internal force redistributions with verification of deformation capacity

• x/d > 0.50: is to be avoided 

2 2/ 0.35 0.298 (1 2) 0.253Rd cd cdx d M bd f bd f →   →   −  = 

2 2/ 0.50 0.425 (1 2) 0.335Rd cd cdx d M bd f bd f →   →   −  = 



0 0

0.35

.5x d

x d

=

=
0 0

0.35

.5x d

x d

=

=
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Limitation of the compression zone depth according to SIA 262

d h



0.50x d

Maximum reinforcement ratio and bending resistance according to SIA 262, section 4.1.4.2:

(for components mainly subjected to bending)

• 0.35 ≤ x/d ≤ 0.5: Internal force redistributions with verification of deformation capacity



0.35x d
0.50x d



?
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System behaviour 

(see also [6], page 2.32ff)

Continuous increase of the load q:

→ Yielding begins first at the fixed-end support, forming a 

plastic hinge 

→ The statically indeterminate system turns (for 

additional loading) into a simple beam

Further load increase is possible until a second plastic 

hinge is formed in the member (= mechanism):

→ Plastic rotation required at the fixed support

→ Rotation demand depending on static system and 

load configuration

→ Rotation capacity limited by steel elongation and / or 

concrete compression

Verification = Comparison:

Deformation capacity Qpu  Deformation demand Qpu,dem

1

2

q

'

uM

uM

V

M

.

.
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Rotation demand Qpu,dem (approximation, example two-span beam)

In general, deformation capacity and deformation demand are coupled.

The interaction can only be neglected for moderate redistributions. 

Additional simplifications:

• Constant bending stiffness

• M-Q rigid-ideal plastic (no hardening in the plastic hinge)

Therefore, the rotation demand Qpu,dem of the intermediate support 

corresponds to the relative rotation of the two beams over the 

intermediate support, which can be considered as simply supported 

beams after reaching May

(at q = qy):

(Two-span beam, first plastic hinge at intermediate 

support, deformation demand for full load)

( ) 3

,
12

y

pu dem

q q l

EI

−
Q =

M
EI h

1
h

aM

ayM
0k =

apQ

q
q

g

h

l l

ayM
Final line

( )g q
M

+

gM

byM
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Rotation demand - Example of a two-span beam

100d d dq g q kN m= + =

sAsA

'

sA

16.00L = 16.00L =

A B C

RdM +

RdM −

BdM

BS + RV1BM =

Moment at intermediate support 

2

8

dq L
0M

1−

1M

0.6

0.2

0.2
0.8

1.2

8 26sA = 

' 8 26sA =  8 530 0.435 1848 kN

1848 kNm

s sd

Rd s sd

A f

M z A f

=   =

=  

2 3

0 1
0

2

1
1

0 1

2 2

0

1

2

2
8 3 12

2
2 ( 1) ( 1)

3

0

8

3

8 8

d d
B

B

B B B B

d
B

d
r

B d

B

EI

EI

M M q L q LL

EI EI EI

M L L

EI EI

q L
M

EI E

EI

M

q L q L

I

−

+

+

+

+

−

−

−

 
Q = =   − = − 

 

Q = =  −  −  =

Q = Q + Q =

Q
→ = − = = 

Q

<





(i.d.R.) 

Since   (crack formation starts 

F

a

orce meth

bove 

od

B), 

p

→

art of the redistribution of internal forces starts before 

yielding (this reduces the plastic rotation demand

 favourable).
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Rotation demand - Example of a two-span beam

EIII (cracked)

100d d dq g q kN m= + =

'

sA

16.00L = 16.00L = 0.6

0.2

0.2
0.8

1.2

8 26sA = 

' 8 26sA =  8 530 0.435 1848 kN

1848 kNm

s sd

Rd s sd

A f

M z A f

=   =

=  

( )( ) 2 2 2 2

0.9

,
3

3 0.9 0.9 4240 205'000 1 780 MNm  ( 3502 MNm )

s
s s s II

II I

s s s s i

z z

x M
M A E d

d x EI

M
EI A E d x d x A E z EI

 

 
=  −  = = 

− 

→ = = − −  =    = =


s s sE = 

x/3
x

M

s

c−


d

h-db

sA

c c cE = − 

x

(here for simplicity εsm = εsr is assumed, with εsm < εsr a smaller rotation

demand results)

sAsAA B C
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Rotation demand - Example of a two-span beam

dyq

A B C

0BQ =

d dyq q−

A B

( ), 0B dem B d dyq qQ = Q −

Yielding

( )

2

2

-1

1 -1

-1

3

3,

2

2

3

8 1 8 1848

8 256

1
57.8 kNm

1
100 57.8 42.2 kNm ( 1.0)

27.8 kNm ( 0.8)

42.2 16 k

12

18.5 mrad ( 1)

12.2 mrad (

Nm

12 78

0.8

0 10 kN

)

m
B dem d d

d Rd
r

y

r

Rd dy

r r

r

d dy r

r

r

r

L
q q

q L M
M q

L

q q kNm

EI

−
−

−



Q = −

=

 = → = =
 

=


→ − = − =  =


=  =


=

 

 =

=  =

After reaching           : 

Two simply supported beams for additional loading

with the corresponding relative rotation of the

beam ends at B (see BS+RV in slide 33)

RdM −

d dyq q−

C

,B demQ

e
la

s
ti
c
 (

c
ra

c
k
e

d
)

re
d
is

tr
ib

u
ti
o
n
 =

 p
la

s
ti
c
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Rotation capacity Qpu – Basics

Example: Plastic hinge angle as a function of  (ductility classes A-C, 1999)

concrete crushing

(compression zone)

rupture of the

reinforcement

B500B

B500C (rupture of the

reinforcement not decisive)

B500A

 [rad]puQ

 [-]

Basis of the calculations:
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Rotation capacity Qpu (simplified) (see also [6], page 2.32ff)

Limitation of the plastic rotation by the

reinforcing steel (rupture of the reinforcement):

Limitation of the plastic rotation by 

the concrete (compressive failure):

Plastic hinge length, depending on load configuration and geometry: region in which the chord 

reinforcement yields (→ determine the chord force distribution from the stress field).

Mean steel elongation when reaching

Mean steel elongation when reaching

smysmu
pus plL

d x d x

 
Q =  − 

− − 

smy

plL

smu

2 smyc d
puc plL

x d x

 
Q = − 

− 

sr ud = 
sr tf =

s
sr

s

f

E
 =

sr sf =
tension chord model

(Stahlbeton I)

Curvature at onset of yielding

Curvature at concrete 

crushing

Curvature at onset of yielding

Curvature at rupture of the 

reinforcement

Rotation per crack:

Plastic hinge rotation = sum of the plastic rotations of 

all cracks from the onset of yielding

sm rm
i

s

d x


Q 

−

sr sm  
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fcd = 20 MPa, fctm = 2.9 MPa

•

Rotation at failure:
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Rotation demand  Rotation capacity (simplified) - Example of a two-span beam

0
x

2.3 2

x

smycu
puc pl

smy s s
pl

smysmu
pus pl

L
x d f E

L d
d x d x

L
d x d

−

−

− −

− −

  
Q =  −  

−  −   
= = = = 

− −  
Q =  − − − 

 with Curvature at onset of yielding mrad m, length plastic hinge  

0.60

0.2

0.2

0.8

' 24240 mmsA =
1.2

sm

d x− −

x

1.1 m, ' 1848 kN

1848
181 mm

0.85 0.6 20

0.16

919 mm

s sdd A f

x

x

d

d x

−

−

 =

→ = =
 

=

− =
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Rotation at failure:

Concrete crushing

Steel rupture

rough assumption: (estimated reduction of elongation at failure

due to tension stiffening - see next slides)

The rotation capacity would be verified. But: Are the assumptions of Lpl, smu all right? 

,

0.003 mrad
2 1.10 0.0023 14.3 2.2 m 31.4 mrad

x 0.181 m

OK

smycu
puc pl

puc B dem

L
x d −

   
Q =  −    − =  =   

−   

→ Q  Q →

,

0.0225 mrad
2 1.10 0.0023 22.2 2.2 m 48.8 mrad 

0.919 m

x 0.0325 mrad
2 1.10 0.0023 33.1 2.2 m 72.7 mrad 

0.919 m

OK

smysmu
pus pl

pus B dem

L
d x d− −

  
  − =  =       

Q =  − =   
− −       − =  =    

→ Q  Q →

B500B

B500 )C

( )

(

22.5‰
0.5

32.5‰
smu ud

 
   =  

 

B500 ( )

 ( )B 0C

B

50

Rotation demand  Rotation capacity (simplified) - Example of a two-span beam
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Rotation capacity Qpu (detailed investigation) - Basics

s srA 

d h

sm

c



x
0.85x

= d

crack cross-

section

(s = fsd)

Reinforcing steel with hardening

(neglecting hardening here is not 

useful: plastic deformations would 

localise in a single crack, leading to 

practically no rotation capacity) 

Tension chord model 

(already presented)

tk

sk

f

f
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Rotation capacity (detailed investigation) - Example of a two-span beam

1
2.2%

( )
1

eff

r s

II

ct

M d x E
n

f EI

−
 = =

−
+ −

0

1 1
1 292 mm ...1

4 2

250 mm

rm

t

rm

s

s

   
  − =  =   

   

→   (spacing of stirrups)

• C30/37:

fcd = 20 MPa,  fctm = 2.9 MPa

•

Equivalent reinforcement ratio

(considering x at failure, see notes *):
0.60

0.2

0.2

0.8

' 24240 mmsA =
1.2

sm

'd x−

x

1.1 m, ' 1848 kN

1848
181 mm

0.85 0.6 20

919 mm

s sdd A f

x

d x

−

−

 =

→ = =
 

− =
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Rotation capacity (detailed investigation) - Example of a two-span beam

Tension chord model

0

1

26 mm

250 mm 

205 GPa

2.9 MPa

2 5.8 MPa

1 2.9 MPa

rm

s

ctm

b ctm

b ctm

s

E

f

f

f

 =

=

=

=

t = =

t = =

(spacing of stirrups)

1
0

0

nackter Stahl

1

0.27‰

,

2
56 MPa

1

2

3

56 MPa

sr s

sr b r sr
sm

s s s

sr s smin s

b r
smin sr sr s

sr s

s sr s
smin s sm

s s

f

s

E E E

f f

s
f

f

f f
f

E E

 =

 <

 t 
→  = − = −



   < →

t
 =  − =  − =



→  = + →

 −
  →  = +

...;Transition to regime 3  at

B500B stays at regime 2

3
1

1

nackter Stahl

b r

h sh

s

E

 =

t
−



"partially yielded"

"fully yielded"

"elastic"

!

1

3
2

B500C

B500B

3

2

0

3‰

‰ 

 (B5

(B5

00C)

00B)

1

29

s b r
sr sd sh m

s

MPa

f s
f E

E

  t
 = +  − + 

 

( )

( )

( )

( )

42‰

2.43 0.27 2.16‰

25.9‰ ( 3  with 556 MPa)

65 23

2.16‰

 (Regime 2  with 17.7‰ 3 )

sm sr s

sm smin s sr

sm s smu

s

r t

sm sr s

sr tmu

f

f

f

f

f

=

  = = − =

  = =  =

  = = − =

  = =

 =



 = , does not reach r

B5

eg

B500B :

ime

00

 

:

 

C
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Rotation capacity (detailed investigation) - Example of a two-span beam

2.4s

s

f

E
=

0
0 0.27‰b r

s

s

E

t
 = =



1

500sf =

shE
1

1.15 575

575 500

65 2.4

1.2 GPa

t s

sh

f f

E

 =

−
=

−

=

B500C

1
1 23.2‰b r

sh

s

E

t
 = =



575tf =

𝜀𝑠𝑚𝑢 = 423

2

10 20 30 65 (B500C)ud =
[‰]sm

[ ]sr MPa

B500C

40 50

min 500sr sf = =

556

25.9

sr

sm

 =

 =
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Rotation capacity (detailed investigation) - Example of a two-span beam

2.4s

s

f

E
=

0
0 0.27‰r b

s

s

E

t
 = =



1

500sf =

[‰]sm
45 (B500B)ud =

shE
1

B500B

1.08 540

540 500
0.95 GPa

45 2.4

t s

sh

f f

E

 =

−
= =

−

[ ]sr MPa

B500B

60 70

Rupture in Regime 2!

540

17.7

t

smu

f =

 =

10 20 30
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Rotation capacity (detailed investigation) - Example of a two-span beam

2.4s

s

f

E
=

1

500sf =

shE
1

575tf =
42smu =3

2

10 20 30 65 (B500C)ud =
[‰]sm

45 (B500B)ud =

shE
1

B500B

540tf =

[ ]sr MPa

575tf =

B500B

B500C

540

17.5

t

smu

f =

 =

556

25.9

sr

sm

 =

 =
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Rotation capacity (detailed investigation) - Example of a two-span beam

Plastic hinge length → Distribution of the top chord force Fsup determined from a stress field

dq

0

supF

wdfwdf

BdR

1.0z =

0cotz 0cotz 

s sA f
P1

P2

supF

3
2

1

x

2plL

3

2

1

 fully yielded

 partially yielded

 elastic

with P1: 

with P2: 

smin s

sr s

f

f

 =

 =
( )

( )

0

2

0

cot ( )

cot (

)

)

(
2

d wd

sup s

sup

w

t

d d

q fx
F

dF
q f x

dx

x

A

z

x f

x

z

= − + 

 =

+
= −

( )

( )
P2

1

P1

2

sup

1

:
2

2

2
2

2
,

d wd

sr s s s s t

b rm
smi

s t s

d wd

b rm
s t s

d wd

n s sr s

q fx
f F A f A f

z

s

A f f z
x

q f

s
A f f

f

z

x
f

f

q

+
 =

−
=

+

t 
− − 



= = −

→

t
 =  +

 =
+

=


→

!
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Rotation capacity (detailed investigation) - Example of a two-span beam

1
2

12
2

 1
2

3
8

52
8

 3
8

( )
5 1

2    2
8 2

1156 kN  675 kN 1831 kN

( )

dy

d dy

Bd dy d dy

q
q q

R L q L q q

EI EI



− +

=    +    −

= + =

=

Reaction for  additional for

= Begin of redistribution 

für 

RBd increases during the redistribution, xP thus decreases (large gradient of M is 

unfavourable for the rotational capacity, since a stronger localization of deformations occurs):

RBd (and thus xP) also depends on the choice of the compression field inclination 0:

→ Several assumptions are necessary to determine the 

deformation capacity

→ Rough estimation, not exact calculation!

dq

0

supF

wdfwdf

BdR

1.0z =

0

0

0 P1 P2 0 P1 P2

2 cot( )( ) ( )
2 cot( )

, ,  

Bd
Bd d wd d wd

R
R z q f q f

z

x x x x

=  + → + =


 →  →large  small, small large

Plastic hinge length → Distribution of the top chord force Fsup determined from a stress field
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Rotation capacity (detailed investigation) - Example of a two-span beam

( )

( )
( )

( )
( )

( )

1

0 0

0

P2

P2

P1

1500 1500
1500 kN, cot( ) 1.5 ( 33.5 ), 500 kNm

2cot( ) 3

2 4240 540 500 1000
823 mm " 2"

500

2 4240 575 500 1000
1127 mm " 2"

500

2 4240 575 556 1000

500

Bd d wd

Pl

Pl

R q f

x L

x L

x

−→   =  =  + = = =


 − 
= =

 − 
= =

 − 
=

B500C:

Assumpt

:

i

B5

on

00B

:

571 mm=

[‰]smu

40
41

30

20

10

2.16

s

s

f

E
− 

=

17.7

25.9

2.162.16

[mm]x

2

1127

PlL=

571 823

2PlL=

( )

( ) ( )

2

1 2

1

0

0

10.5‰ 1.65 m)

24.1‰ 2.25

2

2

 m)

p

p p

p

p

x

sm

l

pl

u sm

pl

x x

smu sm sm
x

pl

L

L

x dx
L

x dx x dx
L

 =   

=

      +  

=

= =

 
 



 

 (averaged over 

 (average

B500C:

d over 

B500B :chord deformations

(approximaly)
Regime 3

Regime 2

Regime 2

Plastic hinge length → Distribution of the top chord force Fsup determined from a stress field
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Rotation demand and rotation capacity (detailed investigation) - Example two-span beam

Plastic rotation at failure

Concrete crushing

Steel rupture

,

,

0.0105
1.65 0.0023 15.1 mrad =18.5 mrad ( 1)

0.919

x 0.0241
2.25 0.0023 53.8 mrad =18.5 mrad ( 1)

0.919

B req r

smysmu
pus pl

B req r

L
d x d− −

  
 − = Q  =  
  

   
Q =  − =   

− −      − = Q  =   
 
 

( ) <

B500C)

B500B

(

22.5‰ with 2.2 m
0.5

32.5‰ 2.2 m

pl

smu ud

pl

L

L

= 
   =  

= 

B500

B500

  ( )

with  ( )

B

C
Rough assumption:

10.5‰ 1.65 m 0.23 ,  1.5  

24.1‰ 2.25 m 0.37 ,  2.0

pl smu ud pl

smu

pl smu ud pl

L L d

L L d

=        
 =    

=        

 with  ( )

 with  ( )

B500B

B500C
More detailed investigation:

not fulfilled!

ok (no problem)

,

0.003 mrad
2 1.10 0.0023 14.3 2.2 m 31.4 mrad

x 0.181 m

OK

smycu
puc pl

puc B req

L
x d −

   
Q =  −    − =  =   

−   

→ Q  Q →

Beams – Deformation capacity
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Additional considerations: ratio of mean strain to maximum strain in the cracks considering bond

[Alvarez 1999]
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Additional considerations: influence of the reinforcement hardening properties

yield plateau

beneficial! 

localised stronger

idealisation

Strains in the three regimes for the 

following characteristic curves of 

reinforcement:
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Additional considerations: influence of the reinforcement hardening properties

→ Reinforcement with a yield plateau is more favourable than cold-formed reinforcement, especially in case of failure in 

regime    .  (yield plateau contributes as an "additional" strain over the entire yielded area)

→ The bilinear idealization overestimates the deformation capacity for a reinforcement with high ductility

bilinear idealised

approx. B500B

[Alvarez 1999]

cold-worked with yield plateau

approx. B500B
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H: su = 14.6%  ft/fs = 1.26 

N: su = 3.8%    ft/fs = 1.05 

L: su = 3.1%    ft/fs = 1.06 

H N L
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Experiment Z1 - LS 

4

Yielding

Experiment Z1 - LS 

10

Hardening

Specimens after failure: plastic (=remaining) 

deformations differ strongly

Tension experiments – Dr. M. Alvarez: Crack patterns at failure
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Tension experiments – Dr. M. Alvarez: Test results
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Load-deformation behaviour considering bond

→ Deformation capacity severely impaired for reinforcement 

with low ductility (failure deformation and hardening!)

Ratio of average elongation to maximum elongation at 

the cracks considering bond

→ Good agreement with tension chord model (almost

identical if the real bare steel curve is taken into

account)

e
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Summary

• The concrete strength should be reduced in plastic analysis depending on the cracking state of the structure and on the material brittleness.

• The concrete contribution in tension between two cracks stiffens the response of bonded reinforcement with respect to bare (unbonded) 

reinforcement. This tension-stiffening effect affects the serviceability response of the structure but also reduces the deformation capacity of the

reinforcement. Assuming simplified bond relationships (as e.g. in the Tension Chord Model) is sufficient for modelling tension-stiffening.

• Deformation capacity and deformation demand are coupled. The interaction can only be neglected for moderate redistributions of the internal 

forces.

• The deformation demand can be determined approximately with reasonable effort using simplified assumptions (constant bending stiffness of the 

elastic areas, rigid-ideal plastic M-Q relationships of the plastic hinges).

• Even with complex calculations, the deformation capacity can only be roughly estimated because it depends on several effects and assumptions 

that cannot be precisely quantified:

− Bond behaviour, in particular, crack spacing

− Mechanical properties of the reinforcement (hardening ratio and deformation of failure, with or without yield plateau)

− Force flow in the area of plastic hinges, in particular, variation of the force in the tension chord

(→ the mean deformations averaged over the length of the plastic hinge are smaller than the mean deformation of a tension chord under 

constant tensile force!)

• In practice, it is therefore advisable to avoid the verification of the deformation capacity for new structures whenever possible (complying with the 

condition x/d < 0.35). Otherwise, it is often easier to ignore the redistribution of internal forces, i.e. to verify the structural safety for the elastic 

stresses including restraint stresses (even if the estimation of the restraints is also time-consuming and requires assumptions).

• If the deformation capacity needs to be verified (e.g. for existing structures), engineering judgement must be applied. The decisive parameters 

should be accounted for as accurately as possible (reinforcement: determine hardening characteristics, not just fs).
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