
2 In-plane loading –
walls and beams

2.1 Stress fields
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Learning objectives
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Within this chapter, the students are able to:

▪ create simplified stress fields and strut-and-tie models for walls, beams and frames, including 

discontinuity regions, as a combination of basic stress fields and strut-and-tie models.

o discuss the differences and similitudes between stress fields and strut-and-tie models.

o identify the critical regions of a simplified stress field or strut-and-tie model and formulate detailed 

stress fields allowing for the verification of those regions.

o verify most frequent nodal zones.

▪ assess the applicability of stress fields and strut-and-tie models, particularly concerning (i) the 

presence of transversal reinforcement, (ii) the selection of suitable effective compressive strength, (iii) 

the proper detailing of nodal zones and (iv) the existence of relevant 3D effects in 3D structures made 

of 2D elements. Whenever 3D effects are present, the students are able to create 2D stress fields 

and strut-and-tie models capturing those effects.



Stress fields

Strut-and-tie models and stress fields: Historical development

• Originally, solutions followed primarily the main load path, the dimensions of the struts being of second importance. Such 

models have persisted until today («Strut-and-tie models», e.g. Schlaich et al., 1984 and 1987).

• Since about 1975, strut-and-tie models (truss models) have been used in combination with the assumption of a limited 

concrete compressive strength fc. The dimensions of the struts and nodal zones result from the assumption of fc.

• The resulting strut-and-tie models (truss models) are statically admissible (discontinuous) stress fields according to the 

lower bound (static) theorem of the theory of plasticity and, therefore, are based on a consistent theoretical basis. 

• Computer-aided methods for the development of stress fields have been developed at various universities (e.g. the 

Compatibility Stress Field Method, CSFM, developed at ETH Zürich in collaboration with the company IDEA StatiCa). The 

use of these methods is starting to become more common in practice. These methods will be discussed in the chapter 

about numerical modelling.
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Stress fields

• The application of stress fields is based on the theory of plasticity.

• ETH Zurich played a central role in their development - namely Professors Bruno Thürlimann and Peter Marti.

• Internationally this approach is known as the "Zurich School". It is based on consistent mechanical models, which are 

verified with large-scale tests.
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Stress fields

Early truss models (descriptive)

Elastic stress fields with principal tensile stresses 
(semi-empirical)
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M. Ritter, «Vorlesung Massivbau» (ca. 1940) P. Lardy, «Vorlesung Massivbau» (1951)E. Mörsch, «Der Eisenbetonbau» (1908)

E. Mörsch, «Der Eisenbetonbau» (1922)
E. Mörsch, «Der Eisenbetonbau» (1908)K. W. Ritter, «Die Bauweise Hennebique» (1899)



Stress fields

Early truss models (descriptive)

Current strut-and-tie models / Stress fields: theory of plasticity = consistent foundation
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E. Mörsch, «Der Eisenbetonbau» (1922)
E. Mörsch, «Der Eisenbetonbau» (1908)K. W. Ritter, «Die Bauweise Hennebique» (1899)



Structrural concrete at the ETH - former professors
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Arthur Rohn
1878-1956

Prof.1908-26/48
(→ Ritter – Beton

Karner – Stahl)

Emil Mörsch
1872-1950

Prof. 1904-1908
(→ A. Rohn)

Karl Wilhelm Ritter
1847-1906

Prof. 1882-1904
(→ Mörsch)

Karl Culmann
1821-1881

Prof. 1855-1881
(→ Ritter)

Pierre Lardy
1903-1958

Prof. 1946-1958
(→ Thürlimann)

Max Ritter
1884-1946

Prof. 1927-1946
(→ Lardy)

Peter Marti
1949

Prof. 1990-2014
(→ Kaufmann)

Pioneers in the application of the

theory of plasticity to structural concrete members

Christian Menn
1927-2018

Prof. 1971-1992
(→ Vogel)

Bruno Thürlimann
1923-2008

Prof. 1960-1990
(→ Marti)

Hugo Bachmann
1935

Prof. 1969-2000
(→ Stojadinovic)



Stoffel / Marti

(1995)

Sigrist / Marti

(1992)

Kaufmann / Marti

(1995)

Bachmann / Thürlimann

(1965)

Maier / Thürlimann

(1985)

Plastic design methods
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Stress fields

Principles for the design of stress fields

There are usually several suitable stress fields to solve the same problem. Designers select the most suitable stress field and 

dimension the reinforcement accordingly.

The consideration of the following principles usually ensures an economic design (the requirement for stiffness also follows 

from the principle of the minimum complementary energy):

• Simplicity (usually only orthogonal reinforcement is used)

• Stiffness (e.g. short ties)

• Efficiency (consider minimum reinforcement in the calculation)

A scaled drawing of the model is highly recommended. 

In any case, sufficient minimum reinforcement should be used

(r = 0.1...0.3 %, depending on the region).

Particular attention should be paid to the choice of the effective concrete compressive strength, that should account for the 

non ideally plastic behaviour of concrete (see separate chapter) and has a decisive influence on the geometry of the model.
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Stress fields

Stress discontinuities

Lower bound theorem of the theory of plasticity: equilibrium must be fulfilled

→ Normal stresses parallel to the discontinuity line may have a discontinuity

(𝜎𝑡
− ≠ 𝜎𝑡

+ is admissible)

→ Normal stresses perpendicular to the discontinuity line and shear stresses must be continuous (𝜎𝑛
− = 𝜎𝑛

+ and 𝜏𝑛𝑡
− = 𝜏𝑛𝑡

+

must be fulfilled)

26.09.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 10



cF

tF

Q

Q

A

B C

H

D

G

E
F

Stress fields

Basic models for beams

(a) without activation of transverse reinforcement
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Stress fields

Basic models for beams

(b) with activation of transverse reinforcement and point load (Q)
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Stress fields

In-class exercise
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Stress fields

Derivation of direct strut mechanism (point load + no activation of transverse reinforcement)

Equilibrium:
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Stress fields

Limits of applicability of direct strut model

G.N.J. Kani (“The Riddle of Shear Failure and its Solution”, 1964): Results of experiments without stirrups

"Kani shear valley"

100% = bending resistance reached 

→ Model "direct strut" ok
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Stress fields
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Test PLS 4000, University of Toronto (2015)

12.00 m

(Phase 1 without shear reinforcement, Phase 2 external stirrups)

7.00 m

(with shear reinforcement)

bw = 0.25 m

h = 4.00 m

d = 3.84 m

a/d = 3.125a/d = 1.823

fc = 44 MPa

Longitudinal reinforcement: Asl = 6300 mm2  fs = 573 MPa

Pu1 = 685 kN

Pu2 = 2162 kN

Shear reinforcement: 

Ast = 200 mm2/m fs = 

522 MPa

Q2

Q1



Stress fields

Phase 1 - bending cracks / bending-shear cracks

© Collins, Bentz & Quach, University of Toronto
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Stress fields

© Collins, Bentz & Quach, University of Toronto

Phase 1 - Critical (bending) shear crack = maximum load (P = 685 kN)
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Q1,calc = 1100 kN (formula slide 14 with ω = 0.085 & kc = 1.0)

Q1,exp = Q1(applied)+ Q1(self weight) = 489 kN

Q1,exp/Q1,calc = 0.44



Phase 1 - Reloading (no load increase)

Stress fields

© Collins, Bentz & Quach, University of Toronto
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Reinforcement with external stirrups

Stress fields

© Collins, Bentz & Quach, University of Toronto
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Phase 2 - Maximum load (P = 2162 kN)

Stress fields

© Collins, Bentz & Quach, University of Toronto
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Stress fields

Limits of applicability of direct strut model

The presented stress fields for beams without transverse reinforcement are strong simplifications of reality:

• The tension chord is modelled like reinforcement without bond, but with an anchor plate that anchors the entire load. In 

reality, bond stresses lead to successive crack formation, and only for loads significantly higher than the cracking load a 

direct strut mechanism occurs.

• If no minimum reinforcement is placed in the member, there is the possibility that a diagonal crack penetrates into the 

compression field and the structure fails before the desired load-bearing mechanism is achieved. This is associated with a 

brittle failure (scale effect!).

The behaviour can be improved by prestressing the tension chord, which forces the direct strut mechanism.

In any case, a load transfer by a direct strut mechanism (without prestressing) is only meaningful in squat elements. In slender 

elements, the nodal zones’ dimensions become very large and the anchorage of the reinforcement becomes problematic 

because the entire tensile force must be anchored behind the bearing!

These problems can be solved by providing transverse reinforcement (or by the activation of the vertical minimum 

reinforcement, which must always be placed).
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Stress fields

Fan and arch mechanisms: beams without activation of transverse reinforcement & distributed load (see also [4])

* ( )d minU =    →

The figure shows 4 possible models for the same 

problem. The formation of a fan or an arch mechanism 

depends, among other aspects, on:

- Slenderness of the element

- Amount of reinforcement

- Loading history

The strut geometry and the dimensions of the bearings 

are selected such that a biaxial compressive stress 

state is obtained in the nodal zone ABC in all examples:

c1 = c3 = - fc
→ The location of points A to E, as well as the lower 

bound of the ultimate load, is identical in all models.

Note: Elastically, the stiffer model tends to form 

minimum complementary energy, i.e.
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Since the location of points A...E is identical in all the models, the geometry can be defined from any of them, or even

from a simpler model:

Solutions of the quadratic equation resulting from the equilibrium condition:

It is also possible to formulate a relationship for the mechanical reinforcement ratio required to resist a certain load q

(see [4]).

Stress fields
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Stress fields

The exact geometry of the fan borders is rarely required in practice. If necessary, a differential equation for these curves can

be formulated with an equilibrium condition on a differential fan element (see Annex).

The trajectory of the lower fan boundary AC is given by: 

The upper edge of the fan DF is also a second degree parabola.
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Stress fields

Load suspension mechanism

The minimum amount of vertical reinforcement (stirrups) 

can be activated by a load suspension mechanism. This 

reduces the tensile force to be anchored behind the 

support.

In all four models the bearing and the load introduction 

plates (B-C, E-F) are identical. Therefore, the lower bounds 

of the ultimate load are identical in all models as well.

The stress fields (right) can be derived from the simple 

strut-and-tie models (left).

The entire load can be suspended (upper models) or only a 

part of it (lower models).

The distribution of the force in the tension chord (lowest 

row) and the force to be anchored behind the support can  

be derived from the respective stress fields.
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Stress fields
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Load suspension mechanism

(a,b): Load Q totally suspended

- Larger amount of stirrups required, but smaller 

tensile force to be anchored

(c,d): Load Q partially suspended

- Lower amount of stirrups required, but larger 

tensile force to be anchored

Tension chord force distribution Ft

- (a,c) steeped, (b,d) continuous

- Ft in all cases lower than with direct strut 

mechanism

Fan boundaries and distribution of 

Ft are hyperbolic
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shear reinforcement

Stress fields

Load suspension mechanism (detail model b)

second degree parabolas

see direct strut mechanism

fan boundary and 

distribution of Ft hyperbolic
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Stress fields

Load suspension mechanism: combination of basic models

Other possible stress fields (concentrated shear reinforcement, combined direct strut and suspension mechanisms

suspension)
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Information Sheet: Strut-and-Tie Model

see website



Stress fields

Beam - Example 1 (see [4] p. 66 ff)

Beam with distributed load, expected crack pattern

→ Idealization as a plane element

→ Upper/lower chord reduced to the centre of gravity of the axes: "Stringer"

→ Web modelled as plane membrane element

Possible strut-and-tie model

→ Upper chord and struts (concrete) = compression forces

→ Lower chord (longitudinal reinforcement) and vertical ties (stirrups) = 

tensile forces

→ Distributed load reduced to statically equivalent individual loads in the 

nodes of the upper chord

→ Correct geometry: nodes chosen in such a way that equivalent static 

nodal forces can be applied

(thus the first compression diagonal is steeper!)

→ If required, strut-and-tie models can be refined into stress fields

q = 200 kN/m

(forces in kN, dimensions in mm)

5 200

200

200
700100

8000

200kN m
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Stress fields

Beam - Example 1 (see [4] p. 66 ff)

Various possible strut-and-tie models

→ Different inclinations of the diagonal concrete struts

→ Flatter struts: 

- more longitudinal reinforcement

- less shear reinforcement

→ The influence of the inclination of the diagonal concrete compression field on the total 

reinforcement volume is low

Note:

→ Assessment of existing bridges designed according to earlier standards (inclined 

principal tensile stresses): The ultimate limit state verification is often only possible with 

very flat inclinations

→ Very flat inclinations lead to large vertical strains in the web → Concrete compressive 

strength is affected, brittle failure of stirrups can occur

→ SIA 262:

1

1
0.65

1,2 55
ck


= 

+
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Stress fields
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Beam - Example 1 (see [4] p. 66 ff)

Strut-and-tie model and corresponding stress field

→ Dashed lines = lines of action of the stress resultant of the individual elements of the 

stress field = struts and ties

→ Resultants of the stress fields = values of the truss forces

→ Tension and compression stringers AF and GM, fan CEGI, fan AKM centred at 

support point A, parallel compression tie ACIK, vertical ties CEIK and ACKM

→ Determination of the chord forces = Stringer forces: Equilibrium of the load acting 

along the chord axes and the forces acting in the individual elements.

→ Force distribution parabolic along fan edges CE, GI and KM, and linear along the 

edges of the parallel compression field (AC and IK)

→ Vertical ties CEIK and ACKM: uniformly distributed forces (100 kN m-1 and

300 kN m-1 respectively)

→ Chord forces from stress field and strut-and-tie model are identical in sections CK 

and EI (stirrup forces = discontinuity lines of the vertical ties)

[kN]

[kN]

480
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Stress fields

Beam - Example 1 (see [4] p. 66 ff)

Propagation of the compressive force into the upper flange

→ Simple 45º truss model (can be refined into a stress field)

→ Applied longitudinal force = Gradient of the longitudinal force in the compression 

stringer = horizontal component of the compression forces in fans and parallel 

compression tie along GM

→ The longitudinal force is supported by inclined struts on compression stringers 

(arranged in the centre of gravity axes of the upper flange).

→ This results in transverse tensile forces → requires transversal reinforcement

→ Consideration of web width = 200 mm in the strut-and-tie model = reduction of the 

transversal reinforcement of the upper flange

Propagation of the tension chord force into the lower flange

→ Analogous considerations (load is spread by means of transversal reinforcement to 

the longitudinal reinforcement bars distributed in the flange)

→ Load spreading at the support A requires extending the longitudinal reinforcement 

above the support (in the order of half of the flange width to fully activate all tensile 

reinforcement)

→ Without extending the longitudinal reinforcement above the support all the required 

tensile capacity (640 kN) at the support should be provided exclusively by the 

reinforcement below the web.

26.09.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 34

[ kN/m ]

[kN]

Upper chord

(compression flange)

Lower chord

(tension flange)

Bearing (axis A)Axis L

480



Stress fields - Transversal shear
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Example – Top view of a T-beam
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Stress fields - Transversal shear
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Example – Top view of a T-beam

... and the associated strut-and-tie model

fcd

[ kN/m ]
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Stress fields

Example 2: Cantilever beam with point and distributed load
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Stress fields

Example 2: Cantilever beam with point and distributed load
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Stress fields

Example 2: Cantilever beam with point and distributed load
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Stress fields

Nodal zones

(a) General nodal zones: Struts with A  B  C

(Forces in equilibrium!)

→ Compressive stress in the nodal zones 2 < min(A, B, C),

except if node boundary ^ corresponding strut

→ Connecting line of the poles of Mohr's circles of stress states on 

both sides of a discontinuity line // stress discontinuity line

(c) nodal zone with A = B = C (relevant in practice)

→ Node boundaries ^ struts, node geometry affine to polygon of 

strut forces (equilibrium)

→ «Hydrostatic» stress condition 1 = 2 = fc
(strictly speaking not hydrostatic, as 3 = 0)

CQ

CS

Q

2 C A B

AQ

BQ

O

AS

(b)

A 1

B

AC

CF

AF

BF

BB BF b=  

AA AF b=  

CC CF b=  

(a)

(d)(c)

A B CS =S =S =Q

AQ

BQ

O

- cf

CQ
B BcF bf= 

A AcF bf= 

C CcF bf= 

B

A
C

CF
AF

BF

Bb

Ab
Cb

cf

cf
cf

cf

cf

BS

Cb

C

B
Bb

2

1

Ab
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Stress fields

Nodal zones

(e) Replacement of a strut (C) by two statically 

equivalent struts (D, E)

→ Only the shape of the node boundary around the 

replaced strut changes, the remaining boundaries stay 

the same.

→ Useful when considering fan stress fields (node 

dimensions based on the stress resultant = define node 

dimensions on a simple strut-and-tie model; exact 

shape of the boundary is usually not relevant)

(f) Treatment of tensile forces

→ Anchored behind the nodal zone, treated like a 

compressive force (see constructive solutions in the 

next slide)

(c)

B BcF bf= 

A AcF bf= 

C CcF bf= 

B

A
C

CF
AF

BF

Bb

Ab
Cb

cf

cf
cf

cf

cf

(e)

AF

B

A
C

DF
AF

BF

cf

cf

EF
DF

BF

EF

cf

cf

D
cf

cf
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Information Sheet: Nodal zones

see website



Stress fields

Nodal zones (see [4] p. 64)

• Proper constructive detailing is critical!

• Anchor plates are not frequently used, but sometimes indispensable to anchor high tensile forces.

• Alternative i: U-shaped links see figures below. Local stress field → concrete cover can only be activated by the tensile 

strength of concrete

• Alternative ii: Use of headed bars (d  3Ø). Experimentally verified that the anchor length is very short (< 10Ø) 

→ Verifcation of the lateral spreading forces!

• Alternative iii: Bent-up flexural reinforcing bars (if enough space to develop a “compression banana" with deviation forces)

• Alternative iv: Stress fields with continuous development of bond shear stresses. Requires larger node dimensions.
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Stress fields
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Nodal zones (see [4] p. 64)

• Proper constructive detailing is critical!

• Simplest solution: nodal zones with h = v

(often referred to as "hydrostatic", but 1 = 0)

• Anchor plates are not frequently used, but sometimes indispensable 

to anchor high tensile forces.

• Alternative (i): Place U-shaped links, see pictures below. Local stress 

field → concrete cover can only be activated by the tensile strength of 

concrete

• Alternative (ii): Headed bars

(anchor plate diameter  3Ø), experimentally verified that the anchor 

length is very short (< 10Ø). Verify the lateral spreading forces!

(i)

(ii)

plan

longitudinal section

3c

infF

infF

infF

dR
ab

ah





Stress fields
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Nodal zones (see [4] p. 64)

• Strictly speaking concrete tensile stresses are required, especially to 

activate the concrete cover.

(i)

plan

longitudinal section

infFah

infF

3c

dR
ab





Stress fields
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Nodal zones (see [4] p. 64)

• Solution (iii): Bent-up reinforcing bars can be 

activated if there is sufficient anchorage length 

behind the support to anchor it (“compression 

banana" in the concrete with a deviation force U).

longitudinal section reinforcement forces concrete forces

(iii) 

infF

ah

3c

dR
ab



bd bl    
bd bl    

infF

infF

U

U



Stress fields
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Nodal zones (see [4] p. 64)

• Alternative (iv): Stress field with continuous

development of tension chord force through bond-

shear stresses. 

• Requires larger node dimensions (large 

anchorage length = node width, despite favorable 

effect of transverse compression on bond)

(iv)

reinforcement forces

concrete forces

longitudinal section

infF

3c

dRab


3c

dR

infF

bd bl    

bd bl    



Stress fields
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Nodal zones (see [4] p. 64)

Disadvantages of solutions (i)-(iii) = "hydrostatic" nodal zone

• Require a relatively large height of the nodal zone, which reduces the

effective depth of the beam.

• Do not consider that a higher compressive strength may be applied in the

nodal zone than in the strut (different values of kc).

Disadvantages of the solution (iv) = anchoring via bond-shear stresses

• Requires a large, often impracticable width of the nodal zone (= bearing 

plate)

Solution (v) (see, e.g. Canadian standard CSA)

• "free" choice of node height and width, leading to nodal zones with h ≠ v

• Compressive stress in strut < Compressive stress in nodal zone

(v)

infFah

3c

dR
ab



cosah 

sinab 



Stress fields
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Nodal zones (see [4] p. 64)

Solution (v) (see Canadian standard CSA, among others): Stresses

(v)

S: strut 

N: nodal zone (v , h = like node boundaries)

vertical node boundary

horizontal node boundary

infFah

3c

dR
ab



cosah 

sinab 

/ ( )v d a wR b b = − 

inf / ( )h a wF h b = − 

d
c3

a a w

R

(b sin h cos ) b sin

−
− =

  +     

wb  

wb 
ZnXn = Qn 3s

Qs Sn



Stress fields
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Nodal zones (see [4] p. 64)

Solution (v) (see Canadian standard CSA, among others): Stresses

(Alternative with even smaller node height)

(v)

infF
ah

3c

dR
ab



cosah 

sinab 

wb  

wb 

S: strut 

N: nodal zone (v , h = like node boundaries)

vertical node boundary

horizontal node boundary

ZnXn = Qn 3s

Qs Sn

d
c3

a a w

R

(b sin h cos ) b sin

−
− =

  +     

/ ( )v d a wR b b = − 

inf / ( )h a wF h b = − 



Stress fields

Concrete compressive stresses in fans: supports (see [4] p. 70 ff)

→ (f) Usual solution:

Non-centred fans with nodal zone,

see stress fields for membrane 

elements with rectangular cross section 

(in the nodal zone: -c3  fc → define the 

dimensions of the bearing plate 

accordingly)

→ (g) Less suitable: Non-centred fans 

without nodal zone (requires longer 

length for the same fc; bond must be 

checked)

→ Chord force distribution Fsup in the fan area can be checked conservatively supposing a centred fan, provided that the 

height of the nodal zone according to (f) is in the flange (check with Finf calculated assuming a centred fan). Otherwise the 

effective depth must be reduced (iteratively).

x

supF

z

infF−

supF

centred fan (O)

Non-centred fan 

with nodal zone

wf

(f)

O

b0a

x

z

infF−

supF
centred fan (O)

Non-centred fan 

without nodal zone

wfO

b
0a

supF
q q

e

(g)

26.09.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 51



Stress fields

Concrete compressive stresses in fans: fan instead of paralell field (see [4] p. 70 ff)

→ (e) Not convenient: In centred fans with large changes of the 

inclination, the compressive stresses at the bottom end of 

the flattest trajectory are much bigger than in adjacent 

parallel compression fields, because the point with the 

flattest inclination, i.e. maximum (1+ cot2), and the largest 

stirrup force fw coincide.

Note: In the adjacent parallel fields (for q = 0):

i.e. the flatter the diagonal compression field, the higher the 

stresses

supF

q
x

Strut-and-tie

model

Stress field

supF

z

infF

wrf

wlf

ba

(e)
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Stress fields

Concrete compressive stresses in fans: fan instead of paralell field

Numerical example 

→ Concrete compressive stresses vary significantly 

with small changes of  (in adjacent parallel 

compression fields approx. 5 MPa to 10 MPa, but 

in point B 16 MPa!)

→ Difference to nodal zones in supports: no 

transversal compression (vertical) due to the 

reaction and no transversal restraint (horizontal) 

due to the bearing plate or adjacent fans

 situation much worse 

→ Strong changes of the inclinations are very 

unfavourable and should be avoided!

[from Marti and Stoffel 1999]

,w rf

cba

x

,lwf
( , )x z

rq

z

z

3 [MPa]c

wb
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Stress fields

Concrete compressive stresses in fans: variable compressive strength

Reduction of compressive strength 

with plastic deformations of the 

chord (kc = 0.4)

Verification in the support nodal zone with increased compressive strength due to 

transverse compression, kc = 1.0 (with confinement reinforcement even higher)

2
3

3 ca. 1.6c cf

2
3

3

Experimental result:

ca. 2.7c cf 

2
3

3 ca. 1.25c cf
x sup max

x sup

supyx

x sup o

x sup
x

cf

3c−

x

xn

x

z
xn

supdx
q

w supf dx

x


ndz

ndx z

cn−

z

3c−
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Stress fields

Concrete compressive stresses in fans

→ Concrete compressive stresses vary hyperbolically along the trajectories

→ Strain state also varies along the trajectories, which modifies the effective concrete compressive strength as well

SIA 262:,

→ Verification of concrete compressive strength in a fan is complex 

→ Under normal conditions, no failure occurs in the fan as long as the tension chord reinforcement does not yield.

→ Verify by checking the compressive stresses in the nodal zone (with increased strength due to transverse restraint or transverse 
compression) as well as in the parallel compression field adjacent to the fan (with yielding of the chord reinforcement in the area under 
consideration = incl. fans with reduced strength).

→ SIA 262: Cross-sectional analysis = nominal verification in the section with distance z·cotα

to the support, corresponds to a verification in the compression field adjacent to the fan

→ Approximation without analysis of the strain state kc = 0.55, 
when the tension chord reinforcement yields in the nodal zone:
reduction of kc = 0.4)

1

1
0.65

1,2 55
ck


= 

+
( ) 2

1 0,002 cotx x a  = + +
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supF

infF

3c−
dV

dN

dM

dV

cotdV 

cwF

dV

dNdM

cotz 

,w nomb

Stress fields

Beam - "Cross-sectional analysis" (parallel chords)

→ Dimensioning by "cross-sectional analysis" is possible, provided that all static 

and geometric values along the beam axis vary only gradually (not abruptly!).

→ Internal forces (M,N) should be related to the centroidal axis; for consideration of 

prestressing see haunched beams

→ Inclination of the concrete compressive field theoretically freely chosen; 

restrictions to avoid premature ruptures of the stirrups or aggregate interlock 

(SIA 262: Normal case 30...45°)

inf

cot

2 2

dd d d
VM N e N

z
F

 − 
= + +

sup

cot

2 2

dd d d
VM N e N

z
F

 − + 
= + +
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supF

infF

dV

cotdV 

cwF

3c−

wdf

dV

dN

dM



3 sinc wb dx 
wf dx

  dx

3 , sinc w nomb dx 
wdf dx

dV

dNdM

cotz ,w nomb

Stress fields

Beam - "Cross-sectional view" (parallel chords)

• Equilibrium at the sectional member (upper right figure)

Force in the reinforcement  fwd :

• Equilibrium at the differential element (bottom right figure)

Concrete compressive stress c3  in the web:

• Ducts in the web disturb the compressive stress field → Reduce web width (see above), where kH = 0.5 (steel) or kH = 0.8 (plastic) applies for 

injected ducts, kH = 1.2 for non-injected ducts.

• Compressive stresses are minimal for truss inclinations of 45°; for flatter inclinations the stresses progressively increase and the concrete 

compressive strength decreases (kc).

Note: Actually this is not a cross-sectional design, since stirrups are determined for a certain length ("staggering effect"); a cross-sectional design 

for shear force is strictly speaking not possible.

3 , ,( ) (tan cot ) mit Øc d d w nom c cd w nom w H HV b z k f b b k− =  +   = − 

( cot )wd d sw sdf V z a f=  
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Stress fields

Beam - "Cross-sectional view" (parallel chords)

Inclined stirrups

cwF

dV

dN

dM

dV

dNdM

swF





( )
inf

cot cot

2 2

d d d dM N e V
F

N

z

  −−
+ +


=

( )
sup

cot cot

2 2

d d d dV
F

M N e N

z

− +   −
+


+


=

cotz 

supF

infF

3c−



s
,w nomb

cwF

dV

( )cot cotdV  − 

cotdV 

swF

cotdV 
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Stress fields

Beam - "Cross-sectional view" (parallel chords)

Inclined stirrups

,cwF 

3c−

( )cot cotsw
sd

A
f z

s
 + 

dV

dN

dM

dV

dNdM






• Resistance of the shear reinforcement:

• Resistance of the concrete compression field:

( ),s cot cot s coin tswsw
Rd d sds

A
V z

s

A
zf f

s

 
=  


=  + 




( ) ( )2

,c cot cot sin sin cosRd w c c cdcd wbV b k f k fz z=  +  =  

Vertical stirrups:
2


 =

cotz 
cotz 

dV

s
,w nomb

,cwF 

dV

cotdV 

26.09.2024 ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete 59



Stress fields

Shear resistance depending on the compression field inclination (web concrete crushing failure)

( )3 cot tan
cot tan

Ed w c cd
c d c cd Rdc

w

V b z k f
k f V

b z

  
 =   +   → =

  + 
5.0

4.0

3.0

2.0

1.0

0.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0

cot 

0.5

0.4

0.3

0.2

0.1

0.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0

cot 

0.6

( )3 cot tanw
c d

Ed

b z

V


  =  + 

1

cot tan

Rdc

w c cd

V

b z k f
=

    + 

( )cot tan + 

→ Concrete compressive stresses increase with flat inclinations

→ Dependence of the effective concrete strength depending on the inclination is not shown in these diagrams 
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Stress fields

Structural elements with static / geometric discontinuities
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B Continuity/Bernoulli regions

D Discontinuity regions: static and/or geometric discontinuities



(a) (b)

(c)

Stress fields

Structural elements with static / geometric discontinuities

Frame corners under pure bending

→ (a) Closing, (b) Opening moment

→ Especially opening frame corners are tricky and demanding in design

→ Diagonal reinforcement (c) is beneficial for anchoring the reinforcement forces 

→ Bending resistance of the adjacent members usually cannot be fully exploited, since the anchoring and the deviation of 

forces in the corner area cause a reduction of the lever arm in comparison with (a), (b) 
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Stress fields

Structural elements with static / geometric discontinuities

Frame corners under pure bending

→ Experiments by Nilsson (1973) confirm the 

observations of the previous slide

→ Headed reinforcing bars are suitable in frame 

corners 

→ Examples of frame corners with distributed 

reinforcement, combined loading etc. see e.g. [5].
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Stress fields
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Structural elements with static / geometric discontinuities

Dapped-end beams (d), (e), (f)

→ (d), (e) possible strut-and-tie models 

→ Diagonal reinforcement favourable (f), analogously to the frame 

corners, superposition of the models (distribution of load can freely 

be chosen).

→ Serviceability behaviour not covered by stress fields

Corbels (g)

→ (f) Basic case

→ Various other models possible, see e.g. [5]

General remarks

→ Stress fields are perfectly suitable for structural elements with static 

or geometric discontinuities

→ Figures only show simple strut-and-tie models

→ Refinement through the introduction of fans, arches, tension and 

compression chords, etc. enables capturing the load-bearing 

mechanism of the concrete and the distributed reinforcement over 

the entire area (as will be shown in the following examples)

(d)

(e)

(g)

(f)

► Overpass road CV-500

(Valencia, Spain)
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Stress fields

Structural elements with static / geometric discontinuities

Spreading of concentrated loads in planar members

Spreading of load requires 

providing a reinforcement 

transversally to the direction 

of the force!

(a) (b) (c) (d)
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Stress fields

Structural elements with static / geometric discontinuities

Wall with opening: further models can be built as combination or extrapolation of already known basic models



Stress fields

Comments for practical application («design»)

• In practical applications, the complete determination of the stress state in all components (fan edges, nodal zones, exact 

tension and chord force curves for fans ...) is not necessary.

• Suitable procedure in practice: 

1. Design the stress field roughly using scale drawings as combination of basic mechanisms

(if necessary with simplifying assumptions such as centred fans and straight compression chords, see below)

Most important basis: experience, understanding of the flow of forces, engineering judgement

2. On this basis, determine sufficiently accurate chord force distributions, shear reinforcement and concrete compressive 

stresses at critical points.

3. Determine important constructive details by designing the nodal zones

• Compression zones with variable height of the compression zone, which occur when the forces of the compression 

stringers cannot be spread into adjacent structural parts such as compression flanges (rectangular cross-sections), make 

the development of stress fields difficult.

• For the sake of simplicity, the compression zone can be reduced to a straight compression chord even in the absence of a 

compression flange, whose position (→ static height) should be determined conservatively in order to avoid insufficient 

concrete dimensions (theoretically correct: resultant of the corresponding part of the fan nodal zone).

• Serviceability behaviour cannot be verified.
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Stress fields

Comments for practical application («assessment»)

• Stress fields with combinations of load-bearing mechanisms (arcs and fans, struts and fans or orthogonal and diagonal 

reinforcement) are very difficult to assess. While they are of secondary importance for design purposes they might be 

necessary to assess existing structures and avoid unnecessary strengthening measures.

• The combination of load-bearing mechanisms can be easily analysed by means of Compatible Stress Fields (see 

numerical analysis chapter). This approach allows computing automating the most optimum stress field (i.e. the exact 

solution according to limit analysis) and accounts for all bearing mechanisms, including minimum reinforcement, whose 

strength contribution is typically neglected in stress fields.

• The Compatible Stress Field Method allows computing the serviceability behaviour (deflections, crack widths…), which is 

unknown in when using strut-and-tie models and stress field.

• Compatible Stress Fields are very suitable both for assessment and design purposes.
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Strut-and-tie model – in-class exercise
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In-class exercise:

Discuss possible strut-and-tie models for the following example

3000 kN

1
.5

 m

4.5 m

0.5 m
1.5 m

0
.5

 m
3
.0

 m

7.5 m

2.5 m

thickness = 0.3 m



ANNEX
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Stress fields

Equilibrium:
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Additional examples
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Beam - Example 3 (see [4] p. 66 ff)



Additional examples

Beam - Example 3 (see [4] p. 66 ff)

Construction and elements of the stress field

→ Points of zero shear force 4 m from support A, support B, beam end C

→ Subdivision of the resulting sections into equal sub-sections → Inclinations of the parallel compression fields are

tan-1(0.9/1.0) = 42.0°, tan-1 (0.9/1.2) = 36.9° and tan-1 (0.9/0.9) = 45.0°.

→ Centred fans (compression trajectories intersect in one point) for concentrated loads

→ Tension chord, compression stringer and vertical ties (shear reinforcement)
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[kN]supF

stress field

strut-and-tie model

[kN m]wf

Additional examples

Beam - Example 3 (see [4] p. 66 ff)

Determination of forces in the stress field

→ Load qinf applied below the upper chord should be suspended by the vertical reinforcement, Dfw = qinf

→ Chord forces of the stress field and strut-and-tie model coincide at points (points with numerical values).

cotwf z  

→ The stirrup forces fw (per unit length) can 

be obtained directly from diagonal cuts at 

the boundaries of the parallel 

compression fields or fans; the forces are 

constant between two boundaries.

→ The forces on the stirrups are constant in 

certain sections; as the load is applied at 

the top, the product                                  

is inscribed in the shear force diagram 

(so-called "staggering effect")
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[kN]supF

[kN]infF

stress field

strut-and-tie model

Additional examples

→ For a constant applied load q, the chord forces Fsup, Finf along parallel compression fields are linear (fw and cotα constant), along centred fans 

are parabolic (fw constant, cot linear).

→ Concrete compressive stresses are constant in parallel compression fields (along stress trajectories and across the width of the compression 

field band), they vary hyperbolically along (straight) trajectories of the fans.

2

3 2
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sin

w w
c

w w

q f q f

b b
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Beam - Example 3 (see [4] p. 66 ff)

Determination of forces in the stress field

→ Distribution of chord forces Fsup, Finf and concrete compr. stress

(chord edges):



Additional examples
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Practical application - Example 4



Additional examples

Practical application - Example 4

Beam - "cross-sectional analysis" (haunched beams with inclined prestressing)

→ Step 1: Translate the resultants from the beam statics calculation (Mdo, Ndo, Vdo ) into the reference system of the stress field (Md, Nd, Vd) 

→ Step 2: Formulate equilibrium on a vertical cut
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Additional examples

Practical application - Example 4

Beam - "cross-sectional analysis" (haunched beams with inclined prestressing)

→ Step 3: Determination of the stresses in the stress field and dimensioning of the elements

→ Source: Marti, P. "Shear design of variable-depth girders with inclined prestressing", Pre-stressed concrete in Switzerland, FIP Swiss Group, 

Zurich 1994, pp. 16-19 
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fw

(Fc, inf)n+1

(Fc, inf)n

Fcw sin - (Fc,n sininf,n - Fc,n+1 sininf,n+1)

Fcw

Fcw

bw dv cos
−c3 = ≤ kc fc

Additional examples

Practical application - Example 4

Beam - "cross-sectional analysis" (haunched beams with inclined prestressing)

→ The stirrup forces result from equilibrium at the shown cross sections (a bit smaller than Fcw sinα, favourable effect of the deviation forces of 

the curved lower chord).

→ The deviation forces of curved tendons make the stirrup force variable over the web height, but this can usually be neglected.

→ Verification of the concrete compressive stress or determination of the web width with the specified relation

→ The distribution of the stirrup forces and concrete stress in the web can be controlled by the geometry of the lower chord («correct 

geometry»: this leads to the most uniform possible stresses over the entire length).
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Additional examples
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Practical application - Example 4


