$$
\begin{aligned}
& (1+\varphi) \cdot \hat{\varepsilon}_{c}=\varepsilon_{s} \\
& (1+\varphi) \frac{N_{c}}{E_{c} \cdot A_{c}}=\frac{N_{s}}{E_{s} A_{s}}, \underbrace{N_{s}+N_{c}=N} \\
& \underbrace{\frac{E_{s} A_{s}}{E_{c} A_{c}}}_{=K}(1+\varphi) N_{c}=N_{s} \stackrel{\nabla}{=} N-N_{c} \\
& (1+k(1+\varphi)) N_{c}=N \Rightarrow N_{c}=\frac{1}{1+k(1+\varphi)} \cdot N \\
& k=1.25 \\
& \text { for } t=0, \quad \varphi=0 \quad N_{c}=0.44 \cdot N, \quad N_{c}=0.56 \mathrm{~N} \\
& +\rightarrow \infty: \varphi=2 \quad N_{c}=0.21 \mathrm{~N}, \quad N_{s}=0.79 \mathrm{~N}
\end{aligned}
$$

