$(1+\varphi), \tilde{\mathcal{E}}_{c} = \varepsilon_{s}$ (κ) $\overline{\mathcal{E}}_{c} = \varepsilon_{s}$ $\overline{\mathcal{E}}_{c}$ $\overline{\mathcal{E}}_{c}$	In-class exercise solution hs/23.11.2023
$\begin{pmatrix} N_{c} \\ I_{+} \\ P \end{pmatrix} = \frac{N_{s}}{E_{c}} A_{c} = \frac{N_{s}}{E_{s}} A_{s}$) two ways of looking at the same problem
$\frac{E_s A_s}{E_c A_c} (1+q) N_c = N_s = N - N_c$ $= K$	
$ \left(1 + k \left(1 + e^{1} \right) \right) N_{c} = N = N = N_{c} = $	$\frac{\lambda}{\lambda + k(\lambda + e)} \sim N$
$\mathcal{K} = \mathcal{N}, 25$	
$f_{0v} = 0 N_c = 0.44 \cdot N$	$N_c = 0.56 N$
$4 \rightarrow \infty$; $\gamma = 2$ N _c = 0.21 N	$N_{S} = 0.79 N$