

Dr. Lukas Gebhard Dr. Severin Haefliger Institute of Structural Engineering D-BAUG, Master Civil Engineering Autumn Semester 2023

Advanced Structural Concrete

(101-0127-00L)

Felsenau bridge (C. Menn, 1975), O. Monsch

Content:	- - -	In-plane loading: (i) walls and beams (stress fields, compatibility and deformation capacity); (ii) membrane elements (yield conditions, compatibility and deformation capacity). Slabs (Equilibrium solutions, yield conditions, shear and punching shear) Numerical modelling (in-plane loading and slabs). Other topics (Long-term behaviour, fire behaviour, fibre-reinforced concrete).		
Learning objectives:	- - -	Deepen the understanding of structural concrete models and apply them to general design problems including existing structures. Enhance the knowledge about the load-deformation response of reinforced and prestressed concrete structures. Evaluate the long-term behaviour and the behaviour under fire conditions.		
Lecture:		Thursday, Start:	09:45 – 11:30, HIL E 7 Thursday, 21. September 2023	
Exercises:		The exercises refer to the material covered in the lectures and serve to enhance the understanding of the discussed topics. It is recommended to solve them independently and continuously. Questions can be discussed with the assistant during the consultation hours. The exercises can be found on the teaching website (<u>http://concrete.ethz.ch/asc/</u>).		
Consultation hour:		Tuesday, Start:	13:00 – 14:00, HIL E 10.3 Tuesday, 03. October 2023, sign-up: <u>karin.yu@ibk.baug.ethz.ch</u>	
Assistant:		Karin Yu, HIL E 37.3		
Literature:	[1] [2] [3] [4] [5] [6] [7] [8] [9]	Lecture notes W. Kaufmann, SB I-II (<u>http://concrete.ethz.ch/</u>) Marti, P., "Theory of Structures", Ernst & Sohn / Wiley, 2012 Structural design norms SIA 260/261/262 "Tragverhalten von Stahlbeton", vdf Hochschulverlag, 1999. "Design of Concrete Structures with Stress Fields", Birkhäuser, 1997 Nielsen, M.P., Hoang, L.C., "Limit Analysis and Concrete Plasticity", CRC Press, 2010. Lecture notes P. Marti, SB I-II (<u>kaufmann.ibk.ethz.ch/education/bachelor/archiv/</u>) Kaufmann W. et al., "Compatible Stress Field Design of Structural Concrete: Principles and Validation", ETH Zurich & IDEA StatiCa, 2020. Lecture notes W. Kaufmann & J. Mata-Falcón, ASC (<u>http://concrete.ethz.ch/asc/</u>)		

Dr. Lukas Gebhard Dr. Severin Haefliger Institute of Structural Engineering D-BAUG, Master Civil Engineering Autumn Semester 2023

Advanced Structural Concrete (101-0127-00L)						
Date	Time	Lecture (HIL E 7)	Exercises (Submission optional)			
21.09.23	10-12	Introduction				
28.09.23	10-12	In-plane loading: walls & beams – Stress fields				
05.10.23	10-12	In-plane loading: walls & beams – Stress fields				
12.10.23	10-12	In-plane loading: walls & beams – Stress fields with prestressing	Introduction Exercise 1			
19.10.23	10-12	In-plane loading: walls & beams – Compatibility and deformation capacity				
26.10.23	10-12	In-plane loading: walls & beams – Compatibility and deformation capacity	Introduction Exercise 2			
02.11.23	10-12	Steel fibre reinforced concrete				
09.11.23	10-12	In-plane loading: membrane elements – Equilibrium, yield conditions				
16.11.23	10-12	In-plane loading: membrane elements – Compatibility and deformation capacity + numerical modelling				
21.11.23	16-18	Workshop "Compatible Stress Fields" (optional)				
23.11.23	10-12	Long-term effects – Basics				
30.11.23	10-12	Long-term effects – Application	Introduction Exercise 3			
07.12.23	10-12	Slabs – Equilibrium, yield conditions				
14.12.23	10-12	Slabs – Shear and punching shear, Numerical modelling	Introduction Exercise 4			
21.12.23	10-12	Fire behaviour				