Advanced Structural Concrete	AS 2021	Page 1/9
Exercise 2	Solution	fm / 13.01.2022

Deformation capacity and demand

SIA 262

Geometry

Material Properites

Concrete

$$f_{cd} = 16.5 \text{ MPa}; f_{cm} = 33 \text{ MPa}$$

 $E_{cm} = k_e \sqrt[3]{f_{cm}} \approx 30.1 \text{ GPa}$
 $f_{cm} = 2.6 \text{ MPa}$

3.1.2.3.3 Table 3

Table 5

Table 8 and 3

Table 5 and 9

Steel

$$\begin{split} f_{s} &= 500 \, \text{MPa;} \ f_{sd} = 435 \, \text{MPa;} \ f_{t} = 540 \, \text{MPa} \\ \varepsilon_{uk} &= 5\% \\ E_{s} &= 205 \, \text{GPa;} \ E_{sh} = \frac{f_{t} - f_{s}}{\varepsilon_{uk} - \frac{f_{s}}{E_{s}}} = 0.84 \, \text{GPa} \\ \tau_{b0} &= 2 \cdot f_{ctm}; \ \tau_{b1} = f_{ctm} \\ \varepsilon_{nom} &= 25 \, \text{mm} \end{split}$$

Load

Load scenario 1: $Q_{d,1} = 300 \, \mathrm{kN}$, $Q_{d,2} = 0 \, \mathrm{kN}$ Load scenario 2: $Q_{d,1} = 0 \, \mathrm{kN}$, $Q_{d,2} = 300 \, \mathrm{kN}$

Advanced Structural Concrete	AS 2021	Page 2/9
Exercise 2	Solution	fm / 13.01.2022
Resistance	<u> </u>	
Beam:		
$d = h_B - c_{nom} - \emptyset_w - \frac{\emptyset}{2} = 500 \mathrm{mm}$		$\emptyset_w = 12 \mathrm{mm}$ $\emptyset = 26 \mathrm{mm}$
2		$A_{s,B} = 2122 \mathrm{m}$
$M_{Rd} = A_{s.B} \cdot f_{sd} \left(d - \frac{A_{s.B} \cdot f_{sd}}{2 \cdot b_B \cdot f_{cd}} \right) = 375.7 \text{ kN}$	Nm	
$x = \frac{A_{s.B} \cdot f_{sd}}{0.85 \cdot b_b \cdot f_{cd}} = 219.6 \text{mm}$		
$\frac{x}{d} = 0.44 > 0.35 \rightarrow \text{verification of deformation capacity required!}$		SIA 262 4.1.4.2.6
$z = d - \frac{0.85 \cdot x}{2} = 406.7 \text{mm}$		
Tension member:		
$N_{Rd} = A_{s.TM} \cdot f_{sd} = 267.9 \mathrm{kN}$		$A_{s.TM} = 616 \mathrm{ms}$
<u>Stiffness</u>		
Beam:		
$\rho_B = \frac{A_{s.B}}{b_B \cdot d} = 1.42\%$		
$n = \frac{E_s}{E_{\rm cm}} = 6.81$		
$x^{II} = d \cdot \left(\sqrt{\left(\rho_B \cdot n\right)^2 + 2 \cdot \rho_B \cdot n} - \rho_B \cdot n \right) = 17$	76.6 mm	
$EI^{II} = A_{s.B} \cdot E_s \cdot \left(d - x^{II}\right) \cdot \left(d - \frac{x^{II}}{3}\right) = 62.1$	MNm^2	
Tension member:		
$EA^{II} = E_s \cdot A_{s.TM} = 126.2 \mathrm{MN}$		
a) <u>Verification of structure for load scenario 1</u>		
Elastic internal forces:		
Basic system + redundant variable	I_{TM}	
$X_1 = 1$	*TM	
ightharpoons F		
l_B		

Advanced Structural Concrete	AS 2021	Page 3/9
Exercise 2	Solution	fm / 13.01.2022

$$\delta_{10} = \underbrace{\frac{1}{3} \cdot \frac{Fl_{B}}{4} \cdot \frac{1}{2} \cdot \frac{l_{B}}{2EI^{II}} + \frac{1}{6} \cdot \frac{Fl_{B}}{4} \cdot \left(2 \cdot \frac{1}{2} + 1\right) \cdot \frac{l_{B}}{2EI^{II}}}_{\frac{3Fl_{B}^{2}}{48FI^{II}}} + 1 \cdot \frac{F}{2} \cdot \frac{1}{l_{B}} \cdot \frac{l_{TM}}{EA^{II}}$$

$$\delta_{11} = \frac{1}{3} \cdot 1 \cdot 1 \cdot \frac{l_B}{EI^{"}} + 1 \cdot \frac{1}{l_B} \cdot \frac{1}{l_B} \cdot \frac{l_{TM}}{EA^{"}}$$

$$\delta_{10} + X_1 \cdot \delta_{11} = 0 \rightarrow X_1 = -\frac{\delta_{10}}{\delta_{11}} = -\frac{\frac{Fl_{TM}}{2l_B EA^{II}} - \frac{3Fl_B^2}{48EI^{II}}}{\frac{l_B}{3EI^{II}} + \frac{l_{TM}}{l_B^2 EA^{II}}}$$

$$M_{B.clamp} = -431.6 \text{ kNm} > M_{Rd}$$

$$M_{B.field} = 346.7 \text{ kNm} < M_{Rd}$$

$$N_{TM} = 92.5 \text{ kN} < N_{Rd}$$

The clamping moment exceeds the moment resistance. Reaching the moment resistance, a plastic hinge at the clamp is formed and the static system of the beam changes to a simply supported beam, which has further load bearing capacity ($M_{B,field} < M_{Rd}$). The rotation capacity of the plastic hinge has to be compared with its deformation demand resulting from the system change.

$$Q_{dy.1} = Q_{d.1} \cdot \frac{M_{Rd}}{M_{B.clamp}} = 261.2 \text{ kN}$$

$$\Delta Q_{d.1} = Q_{d.1} - Q_{dy.1} = 38.8 \text{ kN}$$

 $Q_{dy.1}$ corresponds to the load at which a plastic hinge forms at the fixed end of the beam. $\Delta Q_{d.1}$ corresponds to the load that has to be carried by the simply supported beam.

Advanced Structural Concrete	AS 2021	Page 4/9
Exercise 2	Solution	fm / 13.01.2022

Internal forces after redistribution:

$$\begin{split} M_{B.clamp.red} &= M_{Rd} = 375.7 \, \text{kNm} \rightarrow \text{OK} \\ M_{B.field.red} &= \frac{Q_{dy.1} \cdot l_B}{4} + \frac{X_1 \left(F = Q_{dy.1} \right)}{2} + \frac{\Delta Q_{d.1} \cdot l_B}{4} = 374.6 \, \text{kNm} < M_{Rd} \rightarrow \text{OK} \\ N_{TM.red} &= \frac{Q_{dy.1}}{2} + \frac{X_1 \left(F = Q_{dy.1} \right)}{l_B} + \frac{\Delta Q_{d.1}}{2} = 99.9 \, \text{kN} < N_{Rd} \rightarrow \text{OK} \\ A_{clamp} &= V_{B.max} = Q_{d.1} - N_{TM.red} = 200.1 \, \text{kN} \end{split}$$

Verification shear force:

$$\alpha = 30^{\circ}$$

$$V_{Rd,s} = a_{sw} \cdot f_{sd} \cdot z \cdot \cot(\alpha) = 461.5 \text{ kN} > V_{B.max} \rightarrow \text{OK}$$

$$a_{sw} = 2 \cdot 753 \frac{\text{mm}^2}{\text{m}}$$

$$V_{Rd,c} = b_B \cdot f_{cd} \cdot z \cdot k_c \cdot \sin(\alpha) \cdot \cos(\alpha) = 479.4 \text{ kN} > V_{B.max} \rightarrow \text{OK}$$

$$k_s = 0.55$$

$$4.3.3.4.5$$

Rotation demand:

$$\Theta_{dem} = \delta_{10} \left(F = \Delta Q_{d.1} \right) = \frac{\Delta Q_{d.1} \cdot l_{TM}}{2 \cdot l_B \cdot EA^{II}} + \frac{3 \cdot \Delta Q_{d.1} \cdot l_B^2}{48EI^{II}} = 2.28 \, \text{mrad}$$
Work theorem

Centroid

Rotation capacity:

$$\zeta = 275 \text{ mm}$$

$$I_{y} = \frac{h_{b}^{3} \cdot b_{B}}{12} + 2 \cdot A_{s.B} \cdot (n-1) \cdot \left(\zeta - \left(c_{nom} + \emptyset_{w} + \frac{\emptyset}{2}\right)\right)^{2} = 0.005 \text{ m}^{4}$$

$$M_{r} = \frac{f_{ctm} \cdot I_{y}}{\zeta} = 51.1 \text{kNm}$$

$$\rho_{eff} = \frac{1}{\frac{M_{r} \cdot (d - x_{II}) \cdot E_{s}}{f_{ctm} \cdot EI^{II}}} = 6.6\%$$

Advanced Structural Concrete	AS 2021	Page 5/9
Exercise 2	Solution	fm / 13.01.2022

$$s_{r0} = \frac{\emptyset}{4} \cdot \left(\frac{1}{\rho_{eff}} - 1\right) = 92 \text{ mm}$$

$$s_r = s_{r0} (\lambda = 1)$$

$$\Delta \sigma_s = \frac{2 \cdot \tau_{b1} \cdot s_r}{\emptyset} = 18.4 \text{ MPa} < f_t - f_s = 40 \text{ MPa}$$

$$\sigma_s = \frac{f_s}{g} = \frac{f$$

The reinforcement yields over the entire crack element when failure is reached (Regime 3).

$$x_{P1} = \sqrt{\frac{2 \cdot A_{s.B} \cdot \left(f_t - f_s - \frac{2 \cdot \tau_{b1} \cdot s_r}{\varnothing}\right) \cdot z}{f_{wd}}} = 362 \,\text{mm}$$

$$x_{P2} = \sqrt{\frac{2 \cdot A_{s.B} \cdot \left(f_t - f_s\right) \cdot z}{f_{wd}}} = 493 \,\text{mm} = L_{pl} < z \cdot \cot(\alpha) = 704 \,\text{mm}$$

$$f_{wd} = \frac{V_{B.max}}{z \cdot \cot(\alpha)} = 284.1 \,\frac{\text{kN}}{\text{m}}$$

$$\varepsilon_{sm}(\sigma_{sr} = f_t) = \frac{f_s}{E_s} + \frac{f_t - f_s}{E_{sh}} - \frac{\tau_{b1} \cdot s_r}{E_{sh} \cdot \varnothing} = 39.0\%$$

$$\varepsilon_{sm}(\sigma_{sr} = f_s + \Delta\sigma) = \frac{f_s}{E_s} + \frac{\Delta\sigma_s}{E_s} - \frac{\tau_{b1} \cdot s_r}{E_{sh} \cdot \varnothing} = 13.4\%$$

$$\varepsilon_{sm}(\sigma_{sr} = f_s) = \frac{f_s}{E_s} - \frac{\tau_{b0} \cdot s_r}{E_s \cdot \varnothing} = 2.4\%$$

$$\varepsilon_{smu} = \frac{\varepsilon_{sm}(\sigma_{sr} = f_t) + \varepsilon_{sm}(\sigma_{sr} = f_s + \Delta\sigma)}{2} \cdot x_{P1} + \frac{\varepsilon_{sm}(\sigma_{sr} = f_s + \Delta\sigma) + \varepsilon_{sm}(\sigma_{sr} = f_s)}{2} \cdot (x_{P2} - x_{P1}) = 21.3\%$$

$$\varepsilon_{smy} = \varepsilon_{sm}(\sigma_{sr} = f_s) = 2.4\%$$

Advanced Structural Concrete	AS 2021	Page 6/9
Exercise 2	Solution	fm / 13.01.2022

$$\Theta_{puc} = L_{pl} \cdot \left(\frac{\varepsilon_{cu}}{x} - \frac{\varepsilon_{smy}}{d - x}\right) = 2.61 \,\text{mrad} > \Theta_{dem} = 2.28 \,\text{mrad} \to \text{OK} \qquad \text{(concrete crushing)}$$

$$\Theta_{pus} = L_{pl} \cdot \left(\frac{\varepsilon_{smu}}{d - x} - \frac{\varepsilon_{smy}}{d - x}\right) = 33.40 \,\text{mrad} > \Theta_{dem} = 2.28 \,\text{mrad} \to \text{OK} \qquad \text{(steel rupture)}$$

The rotation capacity of the plastic hinge is satisfactory.

Remark:

Rotation capacity simplified:

$$\Theta_{puc} = d \cdot \left(\frac{\varepsilon_{cu}}{x} - \frac{\varepsilon_{smy}}{d - x}\right) = 2.64 \,\text{mrad} > \Theta_{dem} = 2.28 \,\text{mrad} \rightarrow \text{OK}$$
 (concrete crushing)

$$\Theta_{pus} = d \cdot \left(\frac{0.5 \cdot \varepsilon_u}{d - x} - \frac{\varepsilon_{smy}}{d - x} \right) = 40.39 \,\text{mrad} > \Theta_{dem} = 2.28 \,\text{mrad} \rightarrow \text{OK} \qquad \text{(steel rupture)}$$

The rotation capacity determinded with the simplified method is in good agreement with the more refined method taking into account concrete crushing. For the given geometry (rectangular cross section) assuming $L_{pl} = d$ is justified. The simplified approach overestimates the mean elongations at failure of the reinforcement. For situations with steel rupture being the governing failure mode, the more refined calculation method is recommended.

Advanced Structural Concrete	AS 2021	Page 7/9
Exercise 2	Solution	fm / 13.01.2022

b) Verification of structure for load scenario 2

Elastic internal forces:

$$\delta_{10} = 1 \cdot F \cdot \frac{1}{l_B} \cdot \frac{l_{TM}}{EA^{II}}$$

$$\delta_{11} = \frac{1}{3} \cdot 1 \cdot 1 \cdot \frac{l_B}{EI^{II}} + 1 \cdot \frac{1}{l_B} \cdot \frac{1}{l_B} \cdot \frac{l_{TM}}{EA^{II}}$$

$$\delta_{11} = \frac{1}{3} \cdot 1 \cdot 1 \cdot \frac{l_B}{EI^{"}} + 1 \cdot \frac{1}{l_B} \cdot \frac{1}{l_B} \cdot \frac{l_{TM}}{EA^{"}}$$

$$\delta_{10} + X_2 \cdot \delta_{11} \stackrel{!}{=} 0 \rightarrow X_2 = -\frac{\delta_{10}}{\delta_{11}} = -\frac{\frac{Fl_{TM}}{l_B EA^{"}}}{\frac{l_B}{3EI^{"}} + \frac{l_{TM}}{l_B^2 EA^{"}}}$$

$$M = M_0 + X_2 (F = Q_{d,2}) \cdot M_1$$

$$N = N_0 + X_2 (F = Q_{d,2}) \cdot N_1$$

$$-31.1 \text{kNm}$$

$$M_{B.clamp} = -31.1 \text{kNm} < M_{Rd}$$

 $N_{TM} = 295.9 \text{kN} > N_{Rd} = 267.9 \text{kN}$

The normal force in the tension member exceeds the normal resistance. Reaching the normal resistance, the tension member plastifies and a cantilever beam remains as the static system, which has further load bearing capacity $(M_{B.clamp} < M_{Rd})$. The deformation capacity of the tension member has to be compared with the deformation demand resulting from the system change.

Advanced Structural Concrete	AS 2021	Page 8/9
Exercise 2	Solution	fm / 13.01.2022

$$Q_{dy.2} = Q_{d.2} \cdot \frac{N_{Rd}}{N_{TM}} = 271.6 \text{ kN}$$

$$\Delta Q_{d.2} = Q_{d.2} - Q_{dy.2} = 28.4 \text{ kN}$$

 $Q_{dy,2}$ corresponds to the load at which the tension member yields and can not take any more load. $\Delta Q_{d,2}$ corresponds to the load that has to be carried by the cantilever beam alone.

Internal forces after redistribution:

$$\begin{split} N_{TM.red} &= N_{Rd} = 267.9 \, \text{kN} \rightarrow \text{OK} \\ M_{B.clamp.red} &= X_2 \left(F = Q_{dy.2} \right) - \Delta Q_{d.2} \cdot l_B = -241.1 \, \text{kNm} < M_{Rd} \rightarrow \text{OK} \\ V_{B.max} &= Q_{d.2} - N_{TM.red} = 32.1 \, \text{kN} \end{split}$$

Verification shear force:

$$V_{B.max} = 32.1 \text{kN} < \min(V_{Rd,s}, V_{Rd,c}) = 230.7 \text{kN} \rightarrow \text{OK}$$

Deformation demand tension member:

$$w_{dem} = \frac{\Delta Q_{d.2} \cdot l_{_B}^3}{3EI^{II}} = 64.3 \,\text{mm}$$

Deformation capacity tension member:

$$\rho_{TM} = \frac{A_{s.TM}}{b_{TM} \cdot t_{TM}} = 1.37\%$$

$$s_{r0} = \frac{\emptyset}{4} \cdot \left(\frac{1}{\rho_{TM}} - 1\right) = 252 \,\text{mm}$$

Ø=14mm

Stirrups Ø10@150 $\rightarrow s_r = 150 \,\mathrm{mm}$

The stirrups weaken the concrete cross-section. Therefore, the cracks are likely to form next to the stirrups.

$$\lambda = \frac{s_r}{s_{r0}} = 0.6$$

$$\Delta \sigma_s = \frac{2 \cdot \tau_{b1} \cdot s_r}{\emptyset} = 55.7 \,\text{MPa} > f_t - f_s = 40 \,\text{MPa}$$

$$\sigma_s = \frac{\Delta \sigma_s}{\delta_s} = \frac{\Delta \sigma_s}{\delta_s}$$

The reinforcement does not yield over the entire crack element when failure is reached (Regime 2).

Advanced Structural Concrete	AS 2021	Page 9/9	
Exercise 2	Solution	fm / 13.01.2022	

$$\begin{split} & \varepsilon_{sm}(\sigma_{sr} = f_t) = \frac{\left(f_t - f_s\right)^2 \cdot \emptyset}{4 \cdot E_{sh} \cdot \tau_{b1} \cdot s_{r0}} \cdot \left(1 - \frac{E_{sh} \cdot \tau_{b0}}{E_s \cdot \tau_{b1}}\right) + \frac{\left(f_t - f_s\right)}{E_s} \cdot \frac{\tau_{b0}}{\tau_{b1}} + \left(\frac{f_s}{E_s} - \frac{\tau_{b0} \cdot s_r}{E_s \cdot \emptyset}\right) = 19.5\% \\ & \varepsilon_{smy} = \frac{f_s}{E_s} - \frac{\tau_{b0} \cdot s_r}{E_s \cdot \emptyset} = 2.2\% \\ & w_{pus} = \left(\varepsilon_{sm}(\sigma_{sr} = f_t) - \varepsilon_{smy}\right) \cdot l_{TM} = 69.3 \, \text{mm} > w_{dem} = 64.3 \, \text{mm} \rightarrow \text{Ok} \end{split}$$

The deformation capacity of the tension member is satisfactory. However, assuming the effective crack width would be $s_r = s_{ro}$ (conservative), the deformation capacity was $w_{pus} = 41.1$ mm and not sufficient.