
| Advanced Structural Concrete | AS2023   | Page 1/16 |
|------------------------------|----------|-----------|
| Exercise 4                   | Solution | hs/lg     |

## Dimensioning of a skew-supported slab



## **Material Properties**

Concrete C30/37  $f_{ck} = 30 \text{ MPa}; f_{ctm} = 2.9 \text{ MPa}$  $f_{cd} = 20 \text{ MPa}; \tau_{cd} = 1.1 \text{ MPa}$ 

 $E_{cm} = k_E \sqrt[3]{f_{cm}} \approx 33.6 \text{ GPa}, k_E = 10,000$ 

Steel B500B  $f_{sk} = 500 \,\text{MPa}; \ f_{sd} = 435 \,\text{MPa}$   $E_s = 205 \,\text{GPa}$ 

Tab. 5/9

SIA 262 Tab. 3

Tab. 8

# a) Choosing slab thickness

 $h_{SI} = 0.45 \,\mathrm{m} \triangleq \frac{L}{22}, L = 10 \,\mathrm{m}$  ok

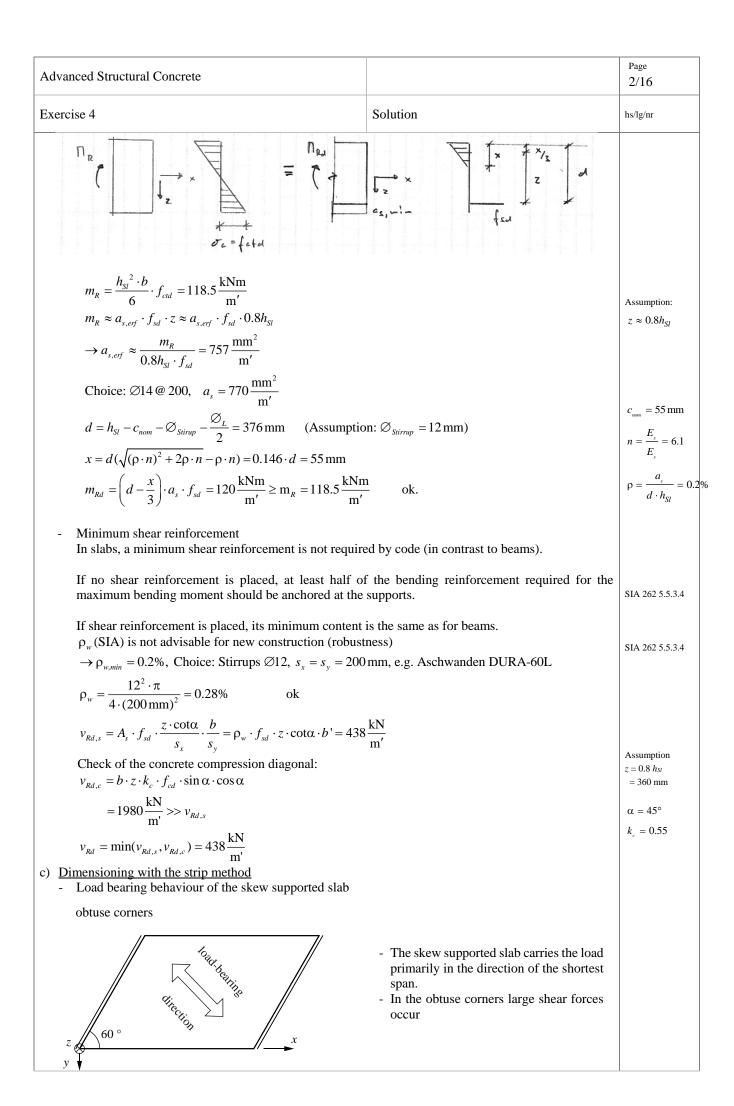
## Loads

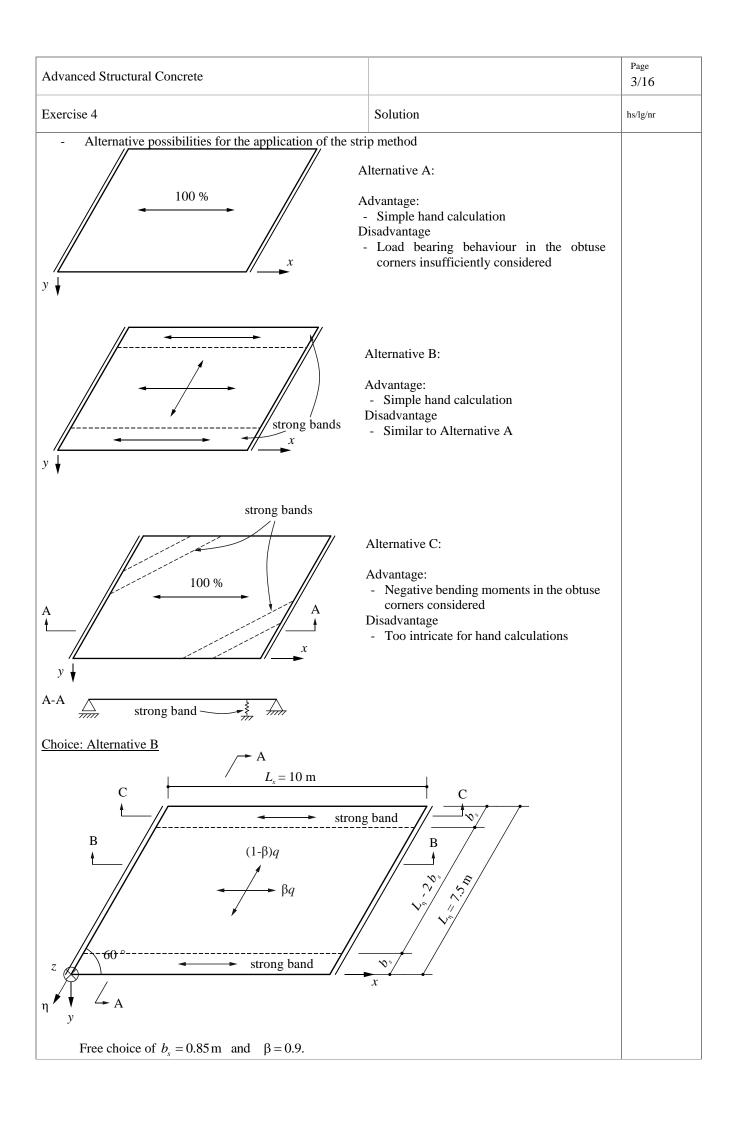
Dead weight:  $g_{0,k} = h_{Sl} \cdot \gamma_c = 0.45 \,\text{m} \cdot 25 \,\frac{\text{kN}}{\text{m}^3} = 11.25 \,\text{kPa}$ 

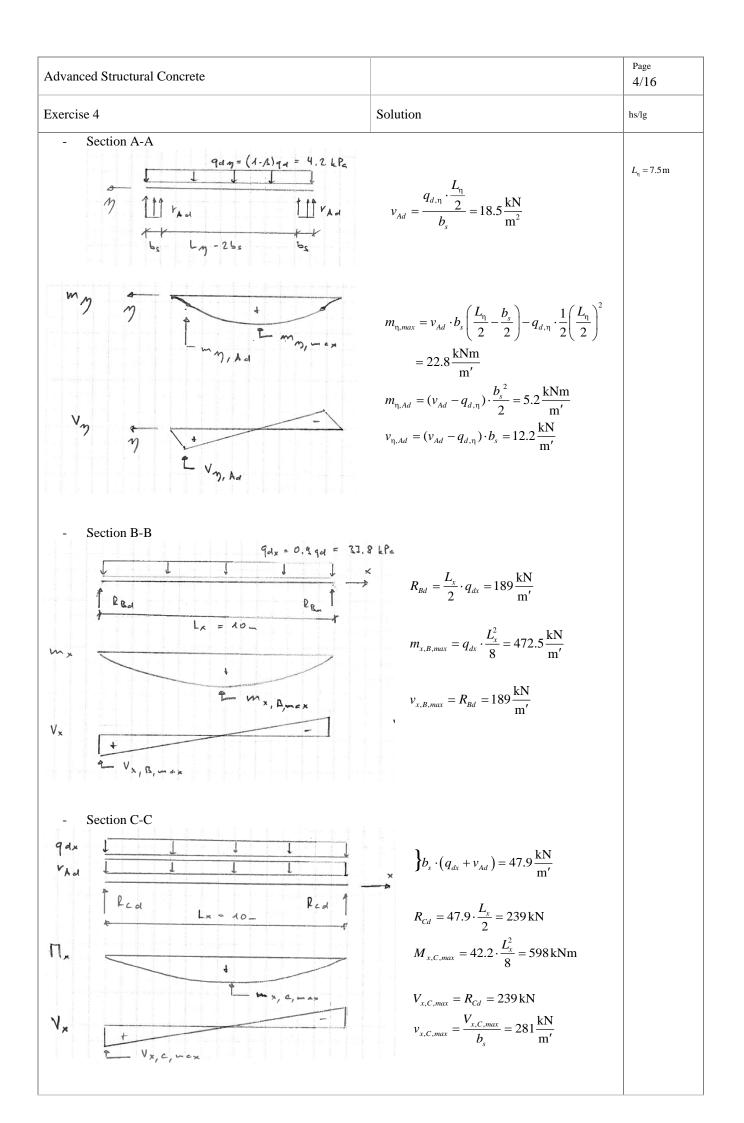
Non-structural dead weight:  $g_{1,k} = 3.0 \text{ kPa}$ Live load:  $q_k = 15.0 \text{ kPa}$ 

Ultimate limit state type 2 SIA 260:

$$q_d = 1.35 \cdot (g_{0,k} + g_{1,k}) + 1.5 \cdot q_k = 41.7 \,\text{kPa} \cong 42 \,\text{kPa}$$


acting on the entire surface of the slab


# b) Minimum reinforcement for bending and shear forces


- Minimum bending reinforcement:

The cracking moment needs to be carried by the reinforcement  $\rightarrow$  avoid a brittle failure when reaching  $f_{\rm ctd}$ .

 $f_{ctd} = k_t \cdot f_{ctk,0.95}$   $k_t = \frac{1}{1 + 0.5 \cdot t}, \quad t = \frac{h_{Sl}}{3}$  4.4.1.3 = 3.51MPa  $f_{ctk,0.95} = 1.3 \cdot f_{ctm}$ 







| Advanced Structural Concrete |          | Page 5/16 |
|------------------------------|----------|-----------|
| Exercise 4                   | Solution | hs/lg     |

- Check of the bending resistance
  - $\circ$  Centre of the slab:  $(x = 6.878 \,\mathrm{m}, y = 3.25 \,\mathrm{m})$

$$m_{x,B,max} = 472.5 \frac{\text{kNm}}{\text{m'}}, \quad m_{\eta,max} = 22.8 \frac{\text{kNm}}{\text{m'}}$$

Choice:  $\emptyset$ 26 @ 150,  $a_{sx} = 3540 \frac{\text{mm}^2}{\text{m}'}$  x-direction

$$d_{1,4} = h_{Sl} - c_{nom} - \frac{\emptyset}{2} = 382 \,\text{mm}$$

$$x = \frac{a_{sx} \cdot f_{sd}}{0.85 \cdot b' \cdot f_{cd}} = 91 \,\text{mm} \rightarrow \frac{x}{d_{1.4}} = 0.23 < 0.35 \text{ ok}$$

$$m_{x,u} = a_{xx} \cdot f_{sd} \cdot \left( d_{1,4} - \frac{0.85x}{2} \right) = 529 \frac{\text{kNm}}{\text{m}'} \ge m_{x,B,max} = 472.5 \frac{\text{kNm}}{\text{m}'}$$
 ok

• Minimum reinforcement in η-direction:

$$m_{\eta,u} \cong 120 \frac{\text{kNm}}{\text{m'}} \ge m_{\eta,max} = 22.8 \frac{\text{kNm}}{\text{m'}}$$
 ok

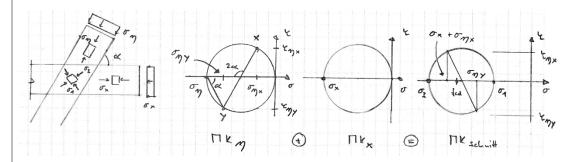
- Upper reinforcement: Minimum reinforcement  $\left(m'_{xu} = m'_{\eta,u} = 120 \frac{\text{kNm}}{\text{m'}}\right)$
- o Strong band:

$$M_{x,C,max} = 598 \,\mathrm{kNm}$$

Choice:  $8\emptyset 26$ ,  $A_s = 4248 \,\text{mm}^2$ ,  $d_C = 382 \,\text{mm}$ 

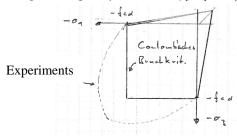
$$x = \frac{A_s \cdot f_{sd}}{0.85 \cdot b_s \cdot f_{cd}} = 127 \text{ mm} \rightarrow \frac{x}{d_C} = 0.34 < 0.35 \text{ ok}$$

$$M_{x,u} = A_s \cdot f_{sd} \cdot \left( d_C - \frac{0.85x}{2} \right) = 602 \text{ kNm} \ge M_{x,C,max} = 598 \text{ kNm}$$
 ok


Reinf. Layers 1, 4 in direction *x* 

 $b' = 1000 \frac{\text{mm}}{\text{m'}}$ 

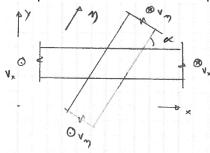
SIA 262 4.1.4.2.5

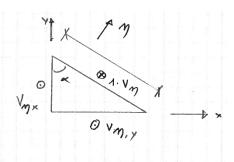

 $b_s = 850 \text{mm}$ SIA 262 4.1.4.2.5

- Remark for the strip method with skewed strips According to the bending structural capacity check,  $\sigma_{\eta} = f_{cd}$ , in the compression zone. This results in a principal compressive stress  $\sigma_3 > f_{cd}$  (compare the Mohr circles below), which is a violation of the Coulomb failure criterion.



Therefore, the compressive strength  $f_{cd}$  of the strips needs to be reduced as a function of the angle  $\alpha$ . The check, however, is accepted due to two reasons:


- 1. The bending resistance has reserves (80% in  $\eta$ -direction).
- 2. Experimental work shows that concrete under bi-axial loading has a higher strength than under axial loading. Consequently, the check  $f_c(\sigma_1) \ge \sigma_3$  should be performed.




# Advanced Structural Concrete Page 6/16 Exercise 4 Solution hs/lg/nr

## -Check of the shear capacity

Principle shear force with skewed strips:





Decomposition of  $v_{\eta}$ :  $v_{\eta,x} = v_{\eta} \cdot \cos \alpha$ ,  $v_{\eta,y} = v_{\eta} \cdot \sin \alpha$ 

Superposition: 
$$v_{x,tot} = v_x + v_{\eta} \cdot \cos \alpha, \quad v_{y,tot} = v_{\eta} \cdot \sin \alpha$$

Principal shear force: 
$$v_0 = \sqrt{v_{x,tot}^2 + v_{y,tot}^2}$$

Principal direction: 
$$\tan \phi_0 = \frac{v_{y,tot}}{v_{x,tot}}$$

Shear resistance without shear reinforcement  $v_{Rd,ur} = k_d \tau_{cd} d_v = 0.45 \cdot 1.1 \text{MPa} \cdot 380 \text{ mm} = 188 \frac{\text{kN}}{\text{m}'}$ 

With: 
$$k_d = \frac{1}{1 + \varepsilon_v dk_g} = \frac{1}{1 + 0.0032 \cdot 380 \cdot 1} = 0.45$$
  $\left(\varepsilon_v = 1.5 \frac{f_{sd}}{E_s} = 0.0032; k_g = 1\right)$ 

O Check section B-B close to the strong band:

$$\begin{aligned} v_{x,B,max} &= 189 \frac{\text{kN}}{\text{m}'} \\ v_{\eta,Ad} &= 12.2 \frac{\text{kN}}{\text{m}'} v_{\eta,x} = 12.2 \cdot \cos 60^\circ = 6 \frac{\text{kN}}{\text{m}'}, \ v_{\eta,y} = 12.2 \cdot \sin 60^\circ = 11 \frac{\text{kN}}{\text{m}'} \\ v_0 &= \sqrt{\left(189 + 6\right)^2 + 11^2} = 195 \frac{\text{kN}}{\text{m}'} \ge v_{Rd,ur} \end{aligned}$$

In this section, shear reinforcement is necessary.

(Strictly speaking, it would be admissible to carry out the check in a section  $d_v/2$  away from the support, but in case of doubt, it is always advisable to place shear reinforcement.)

$$v_{_{Rd,min}} = 438 \frac{kN}{m'} \ge v_0 = 195 \frac{kN}{m'}$$

The minimum shear reinforcement is sufficient and will be placed up to 2 m away from the support (in *x*-direction).

o Check section C-C:

$$\begin{split} v_{x,C,max} &= 281 \frac{\text{kN}}{\text{m}'} \\ v_{\eta,Ad} &= 12.2 \frac{\text{kN}}{\text{m}'} v_{\eta,x} = 12.2 \cdot \cos 60^\circ = 6 \frac{\text{kN}}{\text{m}'}, \ v_{\eta,y} = 12.2 \cdot \sin 60^\circ = 11 \frac{\text{kN}}{\text{m}'} \\ v_0 &= \sqrt{\left(281 + 6\right)^2 + 11^2} = 287 \frac{\text{kN}}{\text{m}'} \ge v_{Rd,ur} \end{split}$$

In this section, shear reinforcement is necessary.

$$v_{_{Rd,min}} = 438 \frac{kN}{m'} \ge v_0 = 287 \frac{kN}{m'}$$

The minimum shear reinforcement is sufficient and will be placed up to 2 m away from the support (in x-direction).

| dvanced Structural Concrete                |                                  |          | 7/16         |
|--------------------------------------------|----------------------------------|----------|--------------|
| xercise 4                                  | S                                | Solution | pb, rev. hs  |
| ) Dimensioning of the slab with CEDRUS-7   |                                  |          | ·            |
|                                            | I1:<br>h = 0.45 m                |          |              |
|                                            |                                  | +        | <del>/</del> |
| Figure 1: Geometry of the slab in CEDRUS-7 |                                  |          |              |
|                                            | R1<br>a=10.0 m/s <sup>2</sup>    |          |              |
|                                            | F1<br>p=-3.000 kN/m <sup>2</sup> |          |              |

| Advanced Structural Concrete |          | 8/16        |
|------------------------------|----------|-------------|
| Exercise 4                   | Solution | pb, rev. hs |



Figure 3:Live loads

# **Result combinations**

## Result combination ULS(d)

| Id Load | Factor | Description                |
|---------|--------|----------------------------|
| EG      | 1.350  | Dead weight                |
| AL      | 1.350  | Non-structural dead weight |
| NL      | 1.500  | Live load                  |

# Specification of the limit state: SLS(quasi-permanent)

# Description

Standard-dimensioning situation: Serviceability quasi-permanent combination

# Load combinations (quasi-permanent)

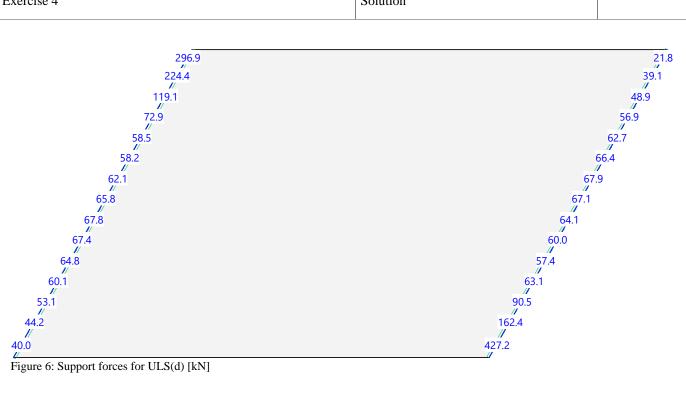
| Load |                     |     | Load combination |
|------|---------------------|-----|------------------|
| Nr   | Name                | Fac | 1                |
| 1    | Dead weight         | 1   | 1                |
| 2    | Non-structural d.w. | 1   | 1                |
| 3    | Live loads          | 1   | 0.6              |

Fac: all combination values are multiplied with this factor

# **Load combinations (frequent)**

|      | ` . ,               |     |                  |  |
|------|---------------------|-----|------------------|--|
| Load |                     |     | Load combination |  |
| Nr   | Name                | Fac | 1                |  |
| 1    | Dead weight         |     | 1 1              |  |
| 2    | Non-structural d.w. | 1   | 1                |  |
| 3    | Live loads          | 1   | 0.7              |  |

Fac: all combination values are multiplied with this factor


# Load superposition

| Load                | additive exclusiv | Load | Factor Komb. |
|---------------------|-------------------|------|--------------|
| Dead weight         | permanent         | EG   | 1.000        |
| Non-structural d.w. | permanent         | AL   | 1.000        |
| Live loads          | where decisive    | NL   | 1.000        |

(translated, not the original)

| Advanced Structural Concrete                                                      |                                              | 9/16                                                                                           |
|-----------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|
| exercise 4                                                                        | Solution                                     | pb, rev. hs                                                                                    |
| -0.50<br>-2.50-3.50<br>-5.00<br>-2.00<br>-3.00                                    | -8.43<br>-7.50<br>-6.50 -7.00<br>-7.50       | /-6.00/-5.00/ -3.50/<br>/-2.50/<br>/-1.50/<br>/-2.00/                                          |
| Figure 4: Elastic deformation for limit state quasi-po                            | -8.98 -7.00                                  | -6.50 <sup>/</sup> /-5.00 <sup>/</sup> /-3.50 <sup>/</sup> /////////////////////////////////// |
| -0.50<br>-2.50<br>-1.00                                                           | -7.50<br>-8.00<br>-7.00 -7.50<br>/-5.50-4.50 | -3.00<br> -2.50<br> -0.50                                                                      |
| -2.00<br>-3.00<br>-5.50<br>Figure 5: Elastic deformation for limit state frequent | -8.00<br>-8.50<br>t                          |                                                                                                |
|                                                                                   |                                              |                                                                                                |
|                                                                                   |                                              |                                                                                                |
|                                                                                   |                                              |                                                                                                |
|                                                                                   |                                              |                                                                                                |

| Advanced Structural Concrete |          | 10/16       |
|------------------------------|----------|-------------|
| Exercise 4                   | Solution | pb, rev. hs |



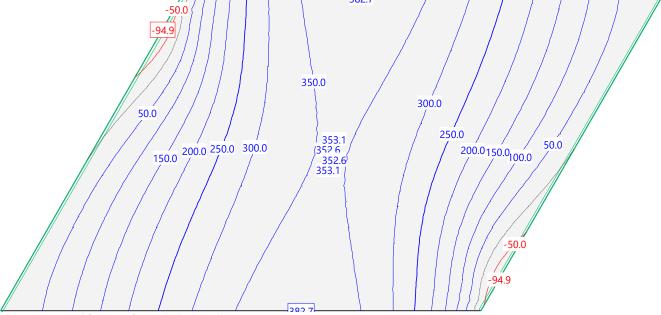
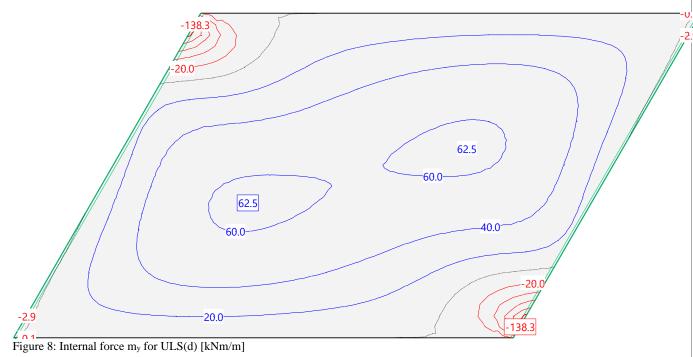




Figure 7: Internal force m<sub>x</sub> for ULS(d) [kNm/m]

| Advanced Structural Concrete |          | 11/16       |
|------------------------------|----------|-------------|
| Exercise 4                   | Solution | pb, rev. hs |



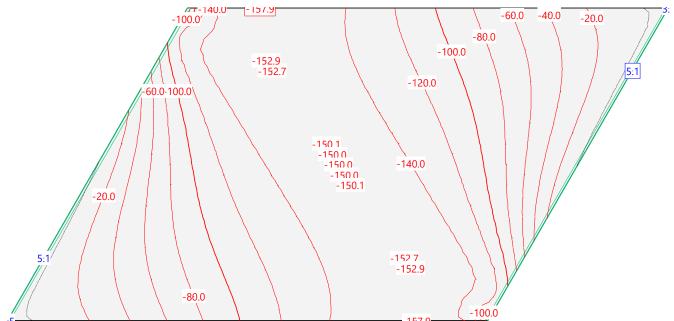



Figure 9: Internal force m<sub>xy</sub> for ULS(d) [kNm/m]

| Advanced Structural Concrete |          | 12/16       |
|------------------------------|----------|-------------|
| Exercise 4                   | Solution | pb, rev. hs |

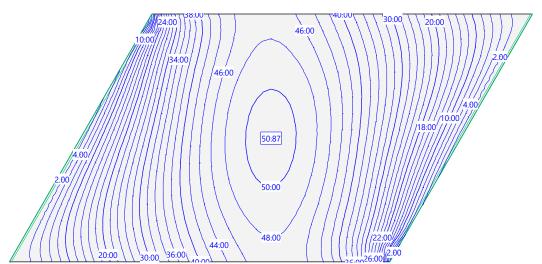



Figure 10: Cross-sections for the lower reinforcement [cm²/m] in x-direction, contour lines at: 2 [cm²/m], scale 1:100

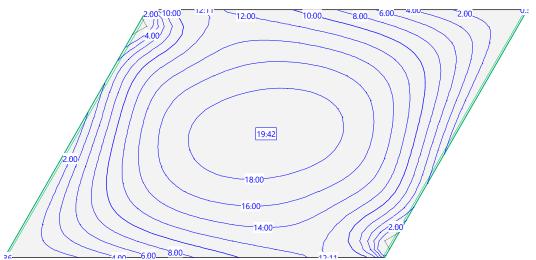



Figure 11: Cross-sections for the lower reinforcement [cm<sup>2</sup>/m] in  $\eta$ -direction, contour lines at: 2 [cm<sup>2</sup>/m], scale 1:100



| Advanced Structural Concrete |          | 13/16       |
|------------------------------|----------|-------------|
| Exercise 4                   | Solution | pb, rev. hs |

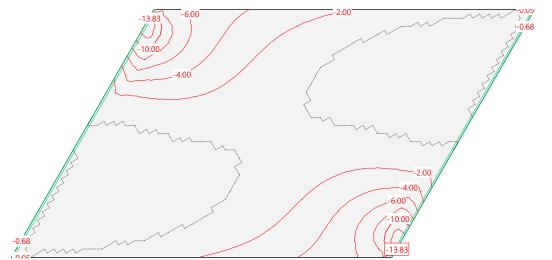
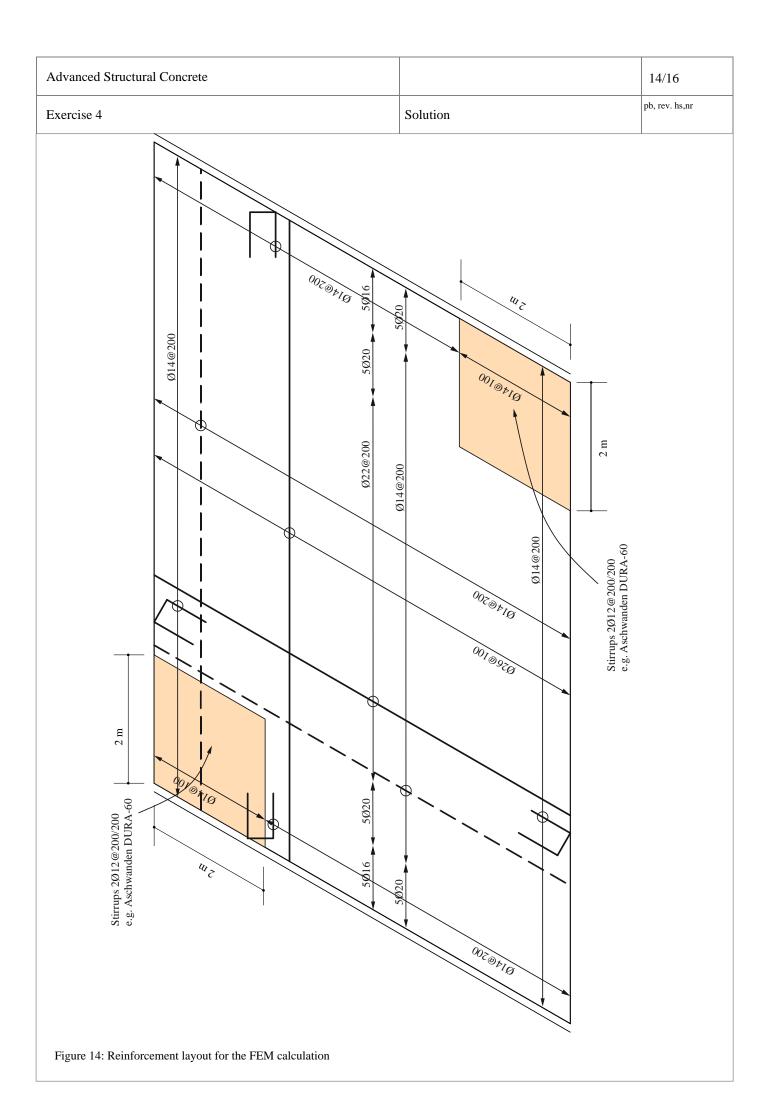




Figure 13: Cross-sections for the upper reinforcement [cm<sup>2</sup>/m] in  $\eta$ -direction, contour lines at: 2 [cm<sup>2</sup>/m], scale 1:100



| Advanced Structural Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      | Page 15/16                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Exercise 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solution                                                                                                                                                                                                             | hs/lg/nr/rev. yuk                            |
| f) Upper limit value of the ultimate load The mechanism in the figure below is chosen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                              |
| External work: $W = q_{ud} \cdot 10 \text{m} \cdot 7.5 \text{m} \cdot \sin(60^\circ) \cdot 1 \cdot \frac{1}{2} = 32.5 \text{m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^2 \cdot q_{ud}$                                                                                                                                                                                                    |                                              |
| Dissipation (internal) work:  Generally: $dD = m_{nu} \cdot \dot{\omega}_n \cdot dt$ (while: $\underline{n} \perp \underline{t}$ )  Two ways to calculate the internal work are shown below: <i>Alternative 1</i> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                              |
| Separating in x-η-direction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      | $a_{sx} = 5309 \frac{\text{mm}^2}{\text{m}}$ |
| $dD = m_{xu} \cdot \dot{\omega}_x \cdot dy + m_{\eta u} \cdot \dot{\omega}_{\eta} \cdot d\xi$ (projected length of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      | (p.14)                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Since the yield line is parallel to the $\eta$ -direction: $\dot{\omega}_{\eta} = 0$ and therefore:                                                                                                                  |                                              |
| $D = D = \int_{0}^{7.5 \cdot \cos(30^{\circ})} m \cdot \dot{\omega} dv = 726 \frac{\text{kNm}}{\text{kNm}} \cdot \frac{2}{\text{cos}(30^{\circ})} \cdot \frac{1}{\text{cos}(30^{\circ})} \cdot \frac{1}{\text{cos}(30^{\circ})$                                                                                                                                                                                                                              | $7.5\mathrm{m} = 1888\frac{\mathrm{kNm}}{\mathrm{m}}$                                                                                                                                                                | $\emptyset = 26 \mathrm{mm}$                 |
| $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ | $D = D_x = \int_{0}^{7.5 \cdot \cos(30^\circ)} m_x \cdot \dot{\omega}_x  dy = 726 \frac{\text{kNm}}{\text{m}} \cdot \frac{2}{5 \text{m}} \cdot \cos(30^\circ) \cdot 7.5 \text{m} = 1888 \frac{\text{kNm}}{\text{m}}$ |                                              |
| with $m_{xu} = a_{sx} \cdot f_{sd} \left( d - \frac{a_{sx} \cdot f_{sd}}{2 \cdot b \cdot f_{cd}} \right) = 726 \frac{\text{kNm}}{\text{m}},  d = 450$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0 - c_{nom} - \varnothing_S - \frac{\varnothing}{2} = 372 \text{ mm}$                                                                                                                                               |                                              |
| Alternative 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                              |
| Consider $n = \xi$ : $dD = m_{\xi_u} \cdot \dot{\omega}_{\xi} \cdot d\eta = \mu_{\xi} \cdot \dot{\omega}_{\xi} \cdot d\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                              |
| Transformation of the reinforcement in directions ξ-η                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                      |                                              |
| $\mu_{\xi} = m_{xu} \cdot \cos^2(-30^{\circ}) + m_{\eta u} \cdot \cos^2(-90) = m_{xu} \cdot \cos^2(30^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                              |
| Rotation of the yield line: $\dot{\omega}_{\xi} = \frac{2}{5\cos(30^{\circ})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                              |
| $D = D_x = \int_0^{7.5} \mu_{\xi} \cdot \dot{\omega}_{\xi}  d\eta = \int_0^{7.5} m_{xu} \cdot \cos^2(30^\circ) \cdot \frac{2}{5\cos(30^\circ)}  d\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1 = 726 \frac{\text{kNm}}{\text{m}} \cdot \cos(30^\circ) \cdot \frac{2}{5 \text{m}} \cdot 7.5 \text{m} = 1888 \frac{\text{kNm}}{\text{m}}$                                                                          |                                              |
| $ \frac{2}{5 \operatorname{m} \cos(30^{\circ})} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                              |
| $W = D \rightarrow q_{ud} = \frac{1888 \frac{\text{kNm}}{\text{m}}}{32.5 \text{ m}^2} = 58.1 \frac{\text{kN}}{\text{m}^2} > q_d = 42 \frac{\text{kN}}{\text{m}^2}$ ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                      |                                              |

| Advanced Structural Concrete |          | 16/16     |
|------------------------------|----------|-----------|
| Exercise 4                   | Solution | hs/mle/lg |

## g) Discussion

#### • Dimensioning with strip method

If the slab is dimensioned using the simple strip method, which neglects the occurrence of twisting moments, a lower limit value of the load results according to the static limit value theorem of the theory of plasticity. With a simple manual calculation, for example, a FEM calculation can be checked for plausibility or a slab can be dimensioned. The last point is valid under the condition that the detailing of reinforcement guarantees a ductile behaviour of the slab.

The load transfer alternative selected in task c) does not sufficiently consider the real load-bearing behaviour of the slab, especially in the obtuse corners. In order for the selected load transfer to occur, a relatively large rearrangement of the internal forces and the associated crack formation are necessary. The serviceability of a bridge can be impaired by such crack formation.

# • Dimensioning with FEM

The FEM calculation also results in a possible equilibrium state (lower limit value of the load), but at the same time considers the compatibility in the homogeneous-elastic state. Due to crack formation in the serviceability limit state as well as restraints, which practically cannot be calculated, the internal forces are redistributed. The actual force flow thus also deviates from that of the calculation, but the load-bearing behaviour can be approximated more accurately overall.

The consideration of twisting moments results in higher reinforcement ratios than with the strip method. The required amount of reinforcement would be reduced if the bars were laid in the direction of the main moments. However, this procedure is not appropriate for installation purposes.

## • Check with yield line method

The yield line method is an application of the kinematic method of the theory of plasticity and results in an upper limit value for the ultimate load. It is therefore suitable for the inspection of existing slabs or the plausibility check of a lower limit value. By varying the failure mechanisms, the calculated upper limit value can be can be minimized. The mechanism considered in task f) is suitable for a manual calculation based on its very simple geometry. In this case, it leads to the same load as in the strip method when the uniaxial load transfer is selected. Thus, this represents the complete solution. As for the elastic internal forces, large plastic deformations would be necessary to reach this failure state. Redistributions within the plate are necessary. While this may still be possible for the bending moments (whereby the proof of the deformability is extremely difficult since the system is statically indeterminate), it is to be expected that a brittle failure occurs beforehand, in particular as a result of the shear force. Since larger cracks should also be avoided at the serviceability limit state, it is recommended that the reinforcement is dimensioned following the elastic internal forces as much as possible.