Advanced Structural Concrete
Exercise 3
Constructing a three-span beam in stages
Geometry

Stage 2 with additional loading

Stage 3 with additional loading

Final state with loading

Material Properties

Concrete \quad| $\mathrm{C} 35 / 45$ | $f_{c k}=35 \mathrm{MPa} ; f_{c t m}=3.2 \mathrm{MPa}$ |
| :--- | :--- |
| | $f_{c d}=22 \mathrm{MPa} ; \tau_{c d}=1.2 \mathrm{MPa}$ |
| | $E_{c m}=k_{E} \sqrt[3]{f_{c m}} \approx 35 \mathrm{GPa}$ with $k_{E}=10000$ |

Steel B500B $\quad f_{s k}=500 \mathrm{MPa} ; f_{s d}=435 \mathrm{MPa}$
$E_{s}=205 \mathrm{GPa}$
a) Creep coefficient $t_{120}=120 \mathrm{~d}, \mathrm{t}_{5 \mathrm{y}}=5 \mathrm{y}$

$$
\varphi\left(t, t_{0}\right)=\varphi_{R H} \cdot \beta_{f c} \cdot \beta_{\sigma c} \cdot \beta\left(t_{0}\right) \cdot \beta\left(t-t_{0}\right)
$$

with $\beta_{f c}=2.6, \quad \beta_{\sigma c}=1.0$

$$
\begin{aligned}
& \varphi_{R H}=1.25\left(R H=70 \%, h_{0}=600 \mathrm{~mm}\right) \\
& \beta\left(t_{0}\right)=0.45 \quad\left(k_{T}=f\left(T=20^{\circ} \mathrm{C}\right)=1.0, \text { normal hardening cement }\right)
\end{aligned}
$$

- For $t=$ respective age of concrete $=t_{120}-t_{\text {casting }}$:

$$
\beta\left(t-t_{0}\right)=\left\{\begin{array}{ll}
\beta(90 \mathrm{~d}) & \text { St. } 1 \\
\beta(60 \mathrm{~d}) & \text { St. } 2 \\
\beta(30 \mathrm{~d}) & \text { St. } 3
\end{array}\right\}=\left\{\begin{array}{l}
0.42 \\
0.38 \\
0.32
\end{array}\right\}
$$

$$
\varphi\left(t, t_{0}\right)=\left\{\begin{array}{ll}
\varphi(120 \mathrm{~d}, 30 \mathrm{~d}) & \text { St. } 1 \\
\varphi(90 \mathrm{~d}, 30 \mathrm{~d}) & \text { St. } 2 \\
\varphi(60 \mathrm{~d}, 30 \mathrm{~d}) & \text { St. } 3
\end{array}\right\}=\left\{\begin{array}{c}
0.614 \\
0.556 \\
0.468
\end{array}\right\}
$$

- For $t=t_{5 y}$:

$$
\beta\left(t-t_{0}\right)=0.85 \quad \text { (approx. for all stages) }
$$

$$
\varphi\left(t, t_{0}\right)=\varphi(5 \mathrm{y}, 30 \mathrm{~d})=1.243
$$

Advanced Structural Concrete	$\begin{aligned} & \text { Page } \\ & 5 / 7 \end{aligned}$
Exercise 3 Solution	hs/lg/rev. yuk
Monolithic structure: Π_{0} M_{1} and M_{2} analogues to Stage 3. From symmetry: $X_{B}=X_{C}$. $\begin{aligned} & \delta_{10}=\delta_{20}=\frac{1}{3} \cdot \frac{L}{E I} \cdot \frac{g_{d} L^{2}}{8} \cdot 1 \cdot 2=\frac{1}{12} \cdot \frac{g_{d} L^{3}}{E I} \\ & \delta_{11}=\delta_{22}=\frac{2}{3} \cdot \frac{L}{E I}, \quad \delta_{12}=\delta_{21}=\frac{1}{6} \cdot \frac{L}{E I} \text { (from stage 3) } \\ & \rightarrow \delta_{1}=\delta_{10}+\delta_{11} X_{B}+\delta_{12} X_{B} \rightarrow X_{B}=-\frac{g_{d} L^{2}}{10}=X_{C} \\ & \frac{g_{d} L}{2} \cdot x-g_{d} \frac{x^{2}}{2}-\frac{g_{d} L^{2}}{10} \frac{x}{L} \\ & M_{\text {Mono }}(x)=\left\{\begin{array}{cc} \frac{g_{d} L}{2} \cdot(x-L)-g_{d} \frac{(x-L)^{2}}{2}-\frac{g_{d} L^{2}}{10} & 0 \leq x \leq L \\ \frac{g_{d} L}{2} \cdot(x-2 L)-g_{d} \frac{(x-2 L)^{2}}{2}-\frac{g_{d} L^{2}}{10}\left(1-\frac{x-2 L}{L}\right) & 2 L<x \leq 3 L \end{array}\right\} \end{aligned}$	Force method BS + RV

| Advanced Structural Concrete |
| :--- | :--- | :--- |
| Exercise 3 |

d) Moment distribution with the Trost Method

$$
\begin{aligned}
& M_{t}(x)=M_{0}(x)+\left(M_{\text {Mono }}(x)-M_{0}(x)\right) \cdot \frac{\varphi\left(t, t_{0}\right)}{1+\mu \cdot \varphi\left(t, t_{0}\right)} \\
& M_{t}(x)=M_{0}(x) \cdot\left(1-\frac{\varphi\left(t, t_{0}\right)}{1+\mu \cdot \varphi\left(t, t_{0}\right)}\right)+M_{\text {Mono }}(x) \cdot \frac{\varphi\left(t, t_{0}\right)}{1+\mu \cdot \varphi\left(t, t_{0}\right)}
\end{aligned}
$$

M_{0} : Moment before system change
$M_{\text {Mono }}$: Moment of monolithic system
Generalized:
$\mathrm{M}_{t}(x)=\sum_{i=1}^{n}\left[M_{0, i}(x) \cdot\left(1-\frac{\varphi\left(t_{i}, t_{0}\right)}{1+\mu \cdot \varphi\left(t_{i}, t_{0}\right)}\right)\right]+M_{\text {Mопо }}(x) \cdot \frac{\varphi\left(t, t_{0}\right)}{1+\mu \cdot \varphi\left(t, t_{0}\right)}$
$M_{120 \mathrm{~d}}(x)=M_{1}(x) \cdot\left(1-\frac{\varphi(90 \mathrm{~d}, 30 \mathrm{~d})}{1+\mu \cdot \varphi(90 \mathrm{~d}, 30 \mathrm{~d})}\right)+M_{2}(x) \cdot\left(1-\frac{\varphi(60 \mathrm{~d}, 30 \mathrm{~d})}{1+\mu \cdot \varphi(60 \mathrm{~d}, 30 \mathrm{~d})}\right)$

$$
+M_{3}(x) \cdot\left(1-\frac{\varphi(30 \mathrm{~d}, 30 \mathrm{~d})}{1+\mu \cdot \varphi(30 \mathrm{~d}, 30 \mathrm{~d})}\right)+M_{\text {Mono }}(x) \cdot \frac{\varphi(90 \mathrm{~d}, 30 \mathrm{~d})}{1+\mu \cdot \varphi(90 \mathrm{~d}, 30 \mathrm{~d})}
$$

$$
M_{120 \mathrm{~d}}(x)=0.588 M_{1}(x)+0.615 M_{2}(x)+0.659 M_{3}(x)+0.412 M_{\text {Mono }}(x)
$$

$M_{5 \mathrm{y}}(x)=\left(M_{1}(x)+M_{2}(x)+M_{3}(x)\right) \cdot\left(1-\frac{\varphi(5 \mathrm{y}, 30 \mathrm{~d})}{1+\mu \cdot \varphi(5 \mathrm{y}, 30 \mathrm{~d})}\right)+M_{\text {Mono }}(x) \cdot \frac{\varphi(5 \mathrm{y}, 30 \mathrm{~d})}{1+\mu \cdot \varphi(5 \mathrm{y}, 30 \mathrm{~d})}$
$M_{5 \mathrm{y}}(x)=0.377 \cdot\left(M_{1}(x)+M_{2}(x)+M_{3}(x)\right)+0.623 M_{\text {Mono }}(x)$

Advanced Structural Concrete	$\begin{aligned} & \text { Page } \\ & 7 / 7 \end{aligned}$
Exercise 3 Solution	hs/lg/rev. yuk
 Remark: As the age of the structure increases, the distribution of moments increasingly approaches that of the monolithic structure due to creep. The approximation " 80% monolithic structure, 20% sum of the individual construction stages" approximates the long-term behaviour relatively well. Since the determination of the creep coefficient is also subject to some uncertainty and the bending stiffness over the length of the beam is by no means constant (crack formation), the calculation using the Trost method can only be regarded as an approximation of the real stress state.	

