Advanced Structural Concrete

Introduction of Exercise 2

Deformation demand and deformation capacity

Load scenario 1: $Q_{d.1} = 300 \,\text{kN}, \ Q_{d.2} = 0 \,\text{kN}$

Load scenario 2: $Q_{d.1} = 0 \text{ kN}, \ Q_{d.2} = 300 \text{ kN}$

Fully cracked structure: EI^{II} , EA^{II}

Task: Verify bearing capacity of the structure considering the deformation demand and the deformation capacity

Deformation demand and deformation capacity

- 1. Determine section forces and compare with resistance of structure. Redistribution of forces necessary?
- 2. Deformation demand
- 3. Deformation capacity
- 4. Deformation demand vs. deformation capacity

Load scenario 1: $Q_{d.1} = 300 \,\text{kN}, \ Q_{d.2} = 0 \,\text{kN}$

Load scenario 2: $Q_{d.1} = 0 \,\text{kN}, \ Q_{d.2} = 300 \,\text{kN}$

Determine section forces and compare with resistance of structure. Redistribution of forces necessary?

Load scenario 1: $Q_{d.1} = 300 \,\text{kN}, \ Q_{d.2} = 0 \,\text{kN}$

M	N

Static systems +

Deformation demand

Load scenario 1: $Q_{d.1} = 300 \,\text{kN}, \ Q_{d.2} = 0 \,\text{kN}$

Static systems

Deformation capacity

Rotation capacity:

 Limitation of the plastic rotation by the reinforcing steel (rupture of the reinforcement):

$$\Theta_{pus} = L_{pl} \cdot \left(\frac{\varepsilon_{smu}}{d - x} - \frac{\varepsilon_{smy}}{d - x} \right)$$

Curvature at onset of yielding

Curvature at rupture of the reinforcement

 Limitation of the plastic rotation by the concrete (compressive failure):

$$\Theta_{puc} = L_{pl} \left(\frac{\varepsilon_{c2d}}{x} \right) \left(\frac{\varepsilon_{smy}}{d - x} \right)$$

Curvature at onset of yielding

Curvature at concrete crushing

Rotation per crack:
$$\Theta_i \approx \frac{\varepsilon_{sm} S_{rm}}{d - x}$$

Plastic hinge rotation = sum of the plastic rotations of all cracks from the onset of yielding

 $L_{\it pl}$ Plastic hinge length, region in which the chord reinforcement yields

 ϵ_{smu} Mean steel elongation when reaching $\sigma_{sr}=f_{t}$

 $\mathbf{e}_{\mathit{smy}}$ Mean steel elongation when reaching $\mathbf{\sigma}_{\mathit{sr}} = f_{\mathit{s}}$

Deformation capacity

Rotation capacity:

① Elastic reinforcement over entire crack element:

$$\sigma_{sr} \leq f_{sv}$$

② Reinforcement yields near cracks, elastic between cracks:

$$f_{sy} \le \sigma_{sr} \le \left(f_{sy} + \frac{2\tau_{b1}s_r}{\varnothing} \right)$$

③ Reinforcement yields over entire crack element:

$$\left(f_{sy} + \frac{2\tau_{b1}s_r}{\varnothing}\right) \le \sigma_{sr} \le f_{su}$$

$$\rho_{eff} = \frac{1}{\frac{M_r(d-x)E_s}{f_{ct}EI^{II}} + 1 - n}$$

$$\varepsilon_{m} = \frac{\sigma_{sr}}{E_{s}} - \frac{\tau_{b0}s_{r}}{E_{s}\varnothing} = \frac{\sigma_{sr}}{E_{s}} - \lambda \frac{f_{ctm}(1-\rho)}{2E_{s}\rho}$$

$$\varepsilon_{m} = \frac{\left(\sigma_{sr} - f_{sy}\right)^{2} \varnothing}{4E_{sh}\tau_{b1}s_{r}} \left(1 - \frac{E_{sh}\tau_{b0}}{E_{s}\tau_{b1}}\right) + \frac{\left(\sigma_{sr} - f_{sy}\right)}{E_{s}} \frac{\tau_{b0}}{\tau_{b1}} + \left(\varepsilon_{sy} - \frac{\tau_{b0}s_{r}}{E_{s}\varnothing}\right)$$

$$\varepsilon_{m} = \varepsilon_{sy} + \frac{\left(\sigma_{sr} - f_{sy}\right)}{E_{sh}} - \frac{\tau_{b1}s_{r}}{E_{sh}}$$

Deformation capacity

Rotation capacity:

with P1:
$$\sigma_{smin} = f_s$$

with P2: $\sigma_{sr} = f_s$

- 3 fully yielded
- 2 partially yielded
- 1 elastic

$$x_{P2} = \sqrt{\frac{2A_s (f_t - f_s)z}{f_{wd}}}$$

$$2A_s (f_t - f_s - \frac{2\tau_{b1}s_r}{\varnothing})$$

Deformation capacity

Tension member:

$$w_{pus} = \left(\varepsilon_{sm}\left(\sigma_{sr} = f_{t}\right) - \varepsilon_{sm}\left(\sigma_{sr} = f_{s}\right)\right) \cdot l_{TM}$$

Organisation

Handout: 04.11.2021

Voluntary submission for correction: 17.11.2021

Publication solution: 18.11.2021