Advanced Structural Concrete

Introduction to Exercise 3

30.11.2023

ETH Zurich | Chair of Concrete Structures and Bridge Design | Advanced Structural Concrete

Goal of this introduction to Exercise 3:

Learn how to take the effect of creep on deformations and internal forces in reinforced concrete structures into account by applying the time-dependent force method.

Example from lecture: Influence of creep for system changes

Construction sequence:

- 1. Two single span girders are positioned (lifted in)
- 2. $t = t_0$: Monolithic connection at B
- → Over time, the internal force distribution approaches the one built in one casting due to creep.

How can we calculate this?

Construction in stages (system change)

*t*_{*p*} : Point in time after beginning of construction *t*_{*c*} : Age of the concrete

Construction in stages (system change)

Creep coefficient

 $\varphi(t,t_0) = \varphi_{RH} \cdot \beta_{\sigma c} \cdot \beta_{fc} \cdot \beta(t_0) \cdot \beta(t-t_0)$

*t*_{*p*} : Point in time after beginning of construction

- *tc* : Age of the concrete
- to : Age of the concrete at beginning of loading

Construction in stages (system change)

*t*_p: Point in time after beginning of construction*t*_c: Age of the concreteIn yellow: moment distribution from additional load

Construction in stages (system change)

*t*_{*p*} : Point in time after beginning of construction *t*_{*c*} : Age of the concrete

After some time, the internal distribution approaches the one cast system.

Construction in stages (system change)

- Simple approximation of the bending moment curve for $t \rightarrow \infty$ with:
 - 80% of the bending moment distribution of what would occur for a monolithic structure at t = 0.
 - 20% of the sum of the bending moments (from each stage) neglecting creep effects.
- Additional task: Determining the bending moment curve at $t_p = 120$ days and $t_p = 5$ years with the Trost method (Formula according to slides 24ff of the lecture).

$$M_{t}(x) = \sum_{i=1}^{n} \left[M_{0,i}(x) \cdot \left(1 - \frac{\varphi(t_{i}, t_{0})}{1 + \mu \cdot \varphi(t_{i}, t_{0})} \right) \right] + M_{mono}(x) \cdot \frac{\varphi(t, t_{0})}{1 + \mu \cdot \varphi(t, t_{0})}$$

Exercise 3: Organisation

Handout: 30.11.2023

Voluntary submission for correction: 13.12.2023

Publication solution: 14.12.2023