Advanced Stuctural Concrete

Colloquium 1

[Quelle: google maps]

Overview

Material: - Concrete C40/50 $\rightarrow f_{cd} = 24$ MPa, $f_{ctm} = 3.5$ MPa

- Steel B500B $\rightarrow f_{sd} = 435 \text{ MPa}$
- Concrete cover $\rightarrow c_{nom} = 45 \text{ mm}$

Task

1. Development of a strut-and-tie model/stress field and dimensioning of the reinforcement

- a. With suspension reinforcement
- b. Without suspension reinforcement

Task 1a

Point-centred fan in longitudinal girder for the load introduction in the diaphragm with suspension

Task 1a

Point-centred fan in longitudinal girder for the load introduction in the diaphragm with suspension

Task 1a

Suspension

Task 1a

- Membrane shear action rather than bending action (very low slenderness)
 → direct strut-load transfer
- Minimum reinforcement in membrane element is not activated

Task 1a

- Activation of the minimum shear reinforcement
- Truss model statically undetermined→ «Engineering judgement»

Summary task 1a

- The reinforcement content necessary for the suspension of the shear forces in the intersection area is very high and results in a very complex design.
- Influence on formwork, reinforcement work and casting of the concrete
- Alternative: Task 1b or approach by Leonhardt/Menn (Task 2, Exercise)

Task 1b

Parallel fan in longitudinal girder for the load introduction in the diaphragm without suspension reinforcement

Task 1b

Task 1b

Task 1b

Hints for the exercise (slender diaphragm)

Task 1

Procedure analogous to colloquium, choice of diaphragm's thickness: $t_d = 1$ m

Evaluate the introduction of the anchorage forces

Leonhardt, Koch & Rostasy (1971)

Hints for the exercise (slender diaphragm)

- Task 3
 - Prestressing as anchorage and deviation forces

