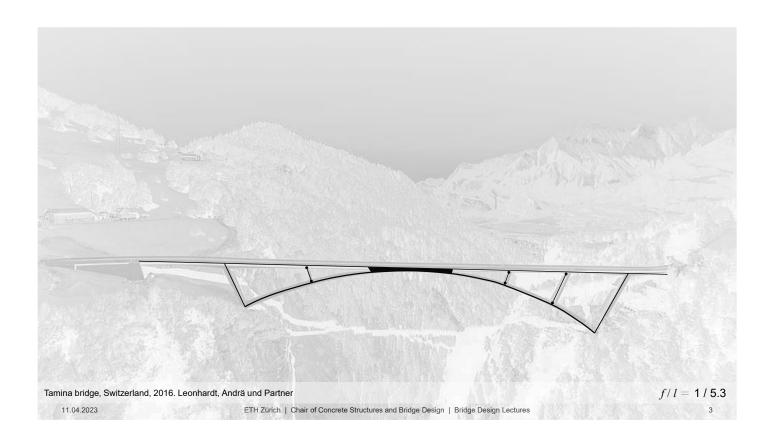
Arch bridges

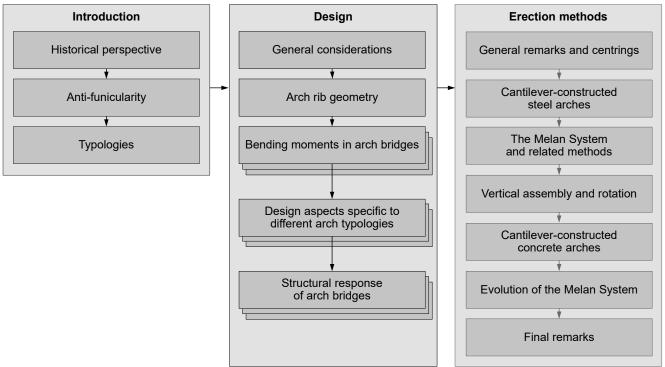
(Bogenbrücken)


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

1

11.04.2023

Video: https://www.youtube.comwatchv=fJCyOFjVvQM



The profile of Tamina bridge is perceived as aesthetically pleasing by structural engineers and laymen alike. As structural engineers, beyond this subjective qualification of a bridge, we are able to judge its structural efficiency by evaluating its behaviour and predicting the response as a function of the actions, the geometry, the support conditions and the relationship between the stiffnesses of the parts of the bridge.

Among others, the following parameters affect the structural behaviour:

- Ratio of rise (f) / span (L)
- Clamped or hinged support at the springing lines
- Hinge at the crown
- Distribution of the columns
- Clamped or hinged columns

This chapters covers the basic knowledge required for conceiving, predimensioning and analysing arch bridges, accounting for these parameters.

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges

Introduction

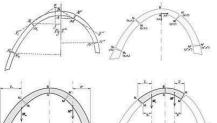
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

5

Arch bridges

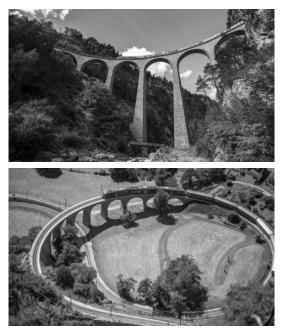
Introduction – Historical perspective and terminology


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

6

- Masonry arches, and masonry arch brides, have been built for centuries, or rather, millennia (photo)
 - $\rightarrow\,$ analysis of arches was one of the first topics studied in the history of the theory of structures
 - \rightarrow da Vinci already studied and measured the horizontal thrust of arches
 - → Coulomb was one of the pioneers, followed by many other (Monasterio, Culmann, Poleni, Heyman, …) (figure)
- Since there is no tensile strength in the joints, masonry structures act primarily in compression → anti-funicular arch geometry (axis geometrically similar to funicular polygon of forces, i.e. corresponding to thrust line = Druck-/Stützlinie) is ideal.


11.04.2023

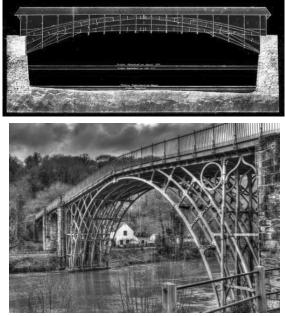
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photo: Puente de Alcántara, Cáceres, Spain (103). Stone masonry arch, length 194 m, main spans 28.8 m, 48 m above Tajo river, width 8.6 m. Photo kfm

Figure: Illustration of Joaquín Monasterio explaining Charles Augustin de Coulomb's arch theory (here: rotational failure mechanisms), taken from A. Albuerne and S. Huerta: "Coulomb's theory of arches in Spain ca. 1800: the manuscript of Joaquín Monasterio," Arch' 10. 6th International Conference on Arch Bridges (Fuzhou, China, October 11-13, 2010), pp. 354-362.

- Masonry arch bridges are part of the cultural heritage of our society and, more specifically, the Swiss railway network.
- For example, the Albula and Bernina lines of RhB are UNESCO World Cultural Heritage, the consistent use of standardised stone masonry arch bridges being one of their main characteristics.

8


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Top photo: Landwasserviadukt Filisur, RhB Albula line, F. von hennings / Müller & Zeerleder, A. Acatos (1902). Masonry arch viaduct, spans 6x20 m. © www.rhb.ch

Bottom photo: Circular viaduct in Brusio, RhB Bernina line, Buss&Cie. AG (1907), length 143 m, spans 9x10 m, 7...17 m above ground. © www.rhb.ch

- Timber arches have also been built for many centuries. Johannes Grubenmann was one of the pioneers (photo).
- About two centuries ago, iron (photo), steel and concrete arches became economical, significantly increasing the feasible spans.
- With its high compressive, but negligible tensile strength, concrete is perfectly suited for arch bridges.

11.04.2023

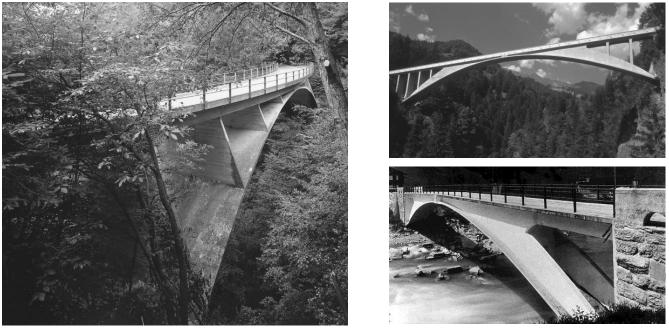
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Top figure: Rheinbrücke Reichenau, J. Grubenmann (1757). Timber arch, span 70 m, destroyed by fire in 1799. © Mario Fontana, Brückenbau.

Bottom photo: Severn bridge in Coalbrookdale, Abraham Darby III. First cast iron bridge, arch span 30 m. Photo © http://www.trover.com/d/1B1dz-ironbridge-england (Brückenbau, Th. Vogel)

- The first concrete arch bridges were mimicking masonry arches (unreinforced concrete used as inexpensive stone surrogate). More slender, efficient and elegant concrete arches emerged about a century ago (photo).
- Switzerland was at the forefront in these developments, mainly due to:
 - → its topography with many steep valleys being wellsuited for arch bridges
 - → the early development of cement production (with very limited domestic steel production)
 - \rightarrow competent and innovative structural engineers
- The following Swiss bridge designers are internationally recognised as pioneers in concrete arch bridge design:
 - \rightarrow Robert Maillart
 - \rightarrow Alexandre Sarrasin
 - \rightarrow Christian Menn

The next slides show some of their most prominent bridges. For more examples, see respective presentation "Eminent bridge designer of the week".

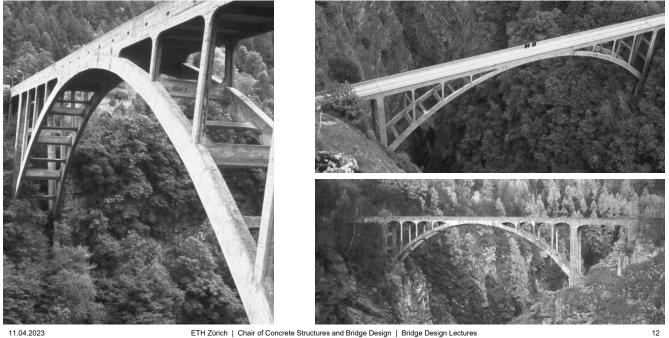

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

10

Photo: Lorrainebrücke (road bridge) Bern, Robert Maillart (1930). Unreinforced concrete, length 178 m, main span (elliptic arch) 82 m, 37 m above Aare. In the background, the Aarebrücke of the SBB Lorraineviadukt, (1941), reinforced concrete arc, main span 150 m (Europe's longest span at the time)

Photo © Chriusha, Wikimedia Commons

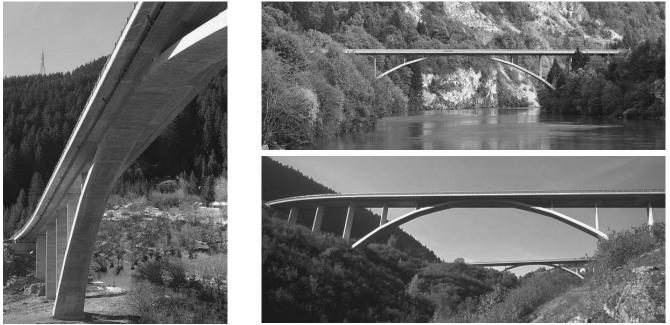


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Robert Maillart: Schwandbachbrücke (1933, L = 37.4 m), Salginatobelbrücke (1930, L = 133 m), Tavanasabrücke (1906, destroyed in 1927, L = 61 m)

Photos © P. Marti, O. Monsch, B. Schillling: Ingenieur-Betonbau



11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Alexandre Sarrasin: Pont de Gueuroz, Vernayaz (1934, I = 99m, L = 168 m), before the construction of the second bridge; Pont de Meryen, Stalden (1930, L = 118 m)

Photos © P. Marti, O. Monsch, B. Schillling: Ingenieur-Betonbau

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

13

Christian Menn: Rheinbrücke Tamins (1962, L = 158 m); Nanin- und Cascellabrücke (1968, L = 173 / 192 m)

Photos © P. Marti, O. Monsch, B. Schillling: Ingenieur-Betonbau

- Of course, spectacular concrete arch bridges were also designed by designers in many other countries.
- As an example, the Tara Bridge (aka Đurđevića-Tara Bridge) designed by Mijat S. Trojanović, opened in 1940

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

14

Photos: Tara Bridge (aka Đurđevića-Tara Bridge , Žabljak, Yugoslavia (now Montenegro), Mijat S. Trojanović (1940). Concrete arch, main span 116 m, 140 m above ground. Falsework by R. Coray.

Photo © M. Durcatova, Shutterstock

- Due to their high erection costs and the progress of more economical typologies (cantilever-constructed bridges for shorter, cable-stayed bridges for longer spans), only few large arch bridges were built in the 2nd half of the 20th century.
- The last three decades have, however, seen a revival of long-span arch bridges, driven by the development of CFST-arches in China (CFST = concrete-filled steel tube).
- Since the first CFST bridge with a moderate span of 115 m built in 1990 (Wanchang Bridge), more than 400 such arches were built.
- Currently, the Third Pingnan Bridge is the longest CFST arch @ 575 m span (2020, see photo, succeeding to the Bosideng Bridge, 2013 @ 530 m span, animated photo).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

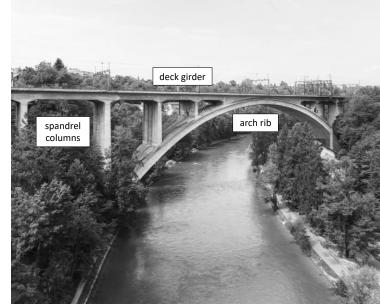
15

Photo: Third Pingnan Bridge, West River (Xun Jiang), Guangxi (2010). CFST through arch bridge, arch span 575 m, total length 1035 m. World's longest span CFST bridge.

Animated photo: First Hejiang Yangtze River Bridge (aka Bosideng Bridge), Sichuan (2013). CFST through arch bridge, arch span 530 m, total length 831 m. World's longest span CFST bridge before Pingnan Third Bridge was inaugurated, and the 3rd longest arch bridge overall (note that two steel truss arch bridges have longer spans than Bosigeng, but shorter than Pingnan: Chaotianmen 552 m, Lupu 550 m).

Source and further reading: J. Zheng, J, Wang, "Concrete-Filled Steel Tube Arch Bridges in China," Bridge Engineering Review paper, *Engineering*, No, 4 (2018), pp. 143-155.

Photo longnan: © IABSE

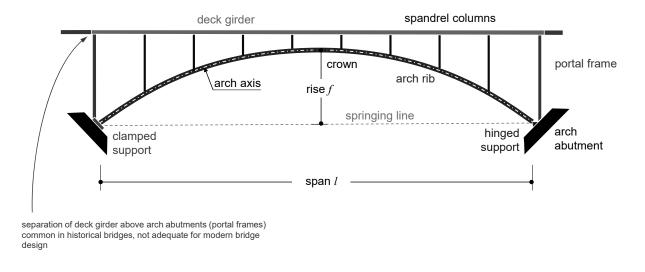

Photo Bosigeng: © megaconstrucciones.net

Arch bridges – Introduction: Terminology

An arch bridge essentially consists of three fundamental structural elements:

- Arch rib (or simply arch)
 - \rightarrow main structural element
 - ... supporting the deck
 - ... transferring the loads to the arch abutments
 - \rightarrow anti-funicular geometry for permanent loads (pure compression under these actions)
- Deck girder (or just deck / girder, all are commonly used for arches)
 - → usually continuous girder, transferring its selfweight and the traffic loads to the spandrel columns or hangers
- · Spandrel columns or hangers
 - $\rightarrow\,$ structural elements connecting deck and arch, acting primarily in
 - ... compression (spandrel columns)
 - ... tension (hangers)

11.04.2023



ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

16

Photo: Aareübergang viaduct © Georg Aerni

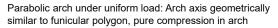
Arch bridges – Introduction: Terminology

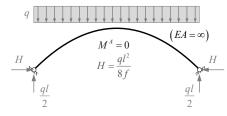
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

17

Arch bridges


Introduction – Anti-funicularity


11.04.2023

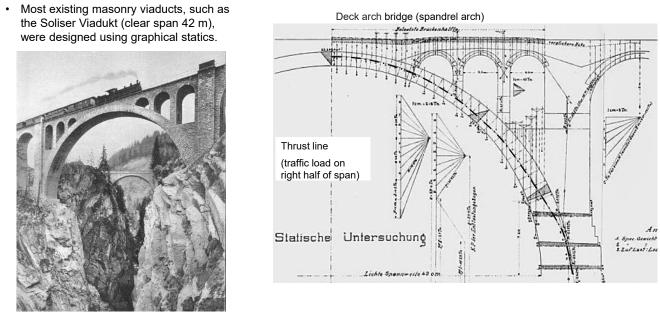
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges – Introduction: Anti-funicularity

- Arches are highly efficient structures, since they are able to carry loads by "compression only" provided that the thrust line lies inside the arch cross-section.
 - $\rightarrow\,$ the ability of arches to carry high loads is primarily due to their shape
- Structures whose axis coincides with the thrust line (i.e., is geometrically similar to the funicular polygon) under a certain load are anti-funicular for that specific load, i.e., they act in pure compression.
- Anti-funicular arches are thus analogous to funicular structures (latin funiculus = rope), but with opposite sign (compression instead of tension).
- In the analysis of masonry arches, and masonry structures in general, graphic approaches are very useful (see notes, figure and next slide).
- The thrust line shows the resultant of compression (in the example on the next slide, for traffic load on the right half of the span).

Culmann (1866): Explanation of arch thrust and support conditions

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

In the graphic analysis of masonry structures (see e.g. Marti, Theory of Structures), the following steps are recommended:

- establish a thrust line for the permanent actions
- deviations of the structure's system axis from the thrust line should be small (otherwise adjust the system geometry)
- check deviations of the thrust line caused by variable actions (if it is outside the structure, adjust loads or structure's geometry)
- check compressive stresses assuming uniform rectangular stress block (compressive force per unit width divided by twice the distance between the structure's edge and the thrust line)

Figurre: C. Culmann: Die graphische Statik. Zürich: Meyer & Zeller, 1866 (Fig. 176).

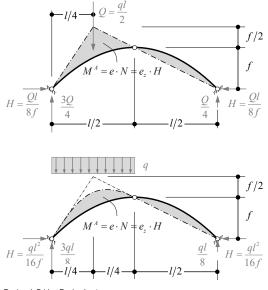
Arch bridges – Introduction: Anti-funicularity

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

20

Structural analysis of the Soliser Viadukt by means of graphic statics.


Figure taken from RhB, Kandidatur Unesco Welterbe: Rhätische Bahn in der kulturlandschaft Albula/Bernina, 2008.

Arch bridges - Introduction: Anti-funicularity

- However, other than ropes and funicular structures in general, arch ribs (as anti-funicular structures for a specific load)
 - \rightarrow do not adjust their shape to varying configurations of applied loads
 - → need to resist arch bending moments $M = e \cdot N = e_z \cdot H$ caused by loads causing deviations e (with vertical component e_z) of thrust line and arch axis

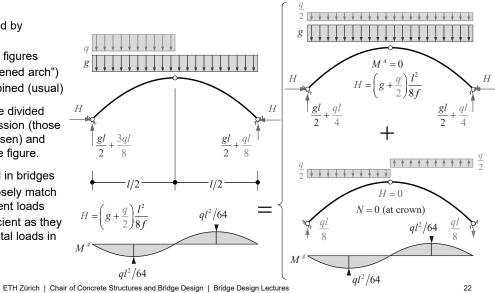
(*M* can be resisted jointly by arch and deck, see behind)

→ in any case require a bending stiffness to prevent buckling (even if globally stabilised by other elements, local buckling must be prevented) Three-hinged arch and thrust line for half-sided load (illustration adapted from Marti, 2014)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

21

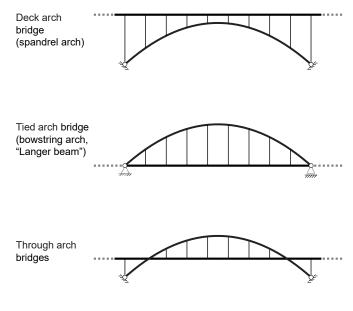

Illustration: P. Marti, Theory of Structures.

Arch bridges – Introduction: Anti-funicularity

- Any arch geometry is obviously antifunicular for one specific load configuration only.
- All other loads need to be carried by bending
 - ightarrow of the arch itself ("stiff arch"), figures
 - ightarrow of the deck girder ("deck-stiffened arch")
 - ightarrow of arch and deck girder combined (usual)
- In analysis, applied loads can be divided into loads causing pure compression (those for which the geometry was chosen) and loads causing pure bending, see figure.
- Self-weight is the dominant load in bridges
 - \rightarrow the arch geometry should closely match the thrust line under permanent loads
 - → arches are then still very efficient as they carry a large portion of the total loads in compression (figures)

11.04.2023

Arch, anti-funicular for uniform load, under non-symmetrical load (illustration adapted from Marti, 2014)

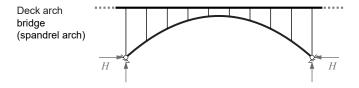

Arch bridges

Introduction – Typologies

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

- The typology of arch bridges is commonly related to the position of the deck with respect to the arch.
- Accordingly, the following types of arches can be distinguished:
 - \rightarrow Deck arch bridge: deck above arch
 - → Tied arch bridge: deck below arch (bowstring arch, "Langerscher Balken")
 - → Through arch bridge: deck and arch intersect (with or without connection)
- Each typology has its structural particularities, but with a common element: The arch.



11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

24

- Structurally, it makes more sense to distinguish arch typologies based on the way the arch thrust *H* (horizontal component of arch normal force) is resisted.
- Arches are most efficient if the arch thrust is carried by the ground ("true arches"), which requires stiff soil
 - → principle of masonry arch bridges (note: high self-weight is beneficial for foundations as it reduces the inclination of the support reaction)
 - \rightarrow principle of deck arch bridges

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

25

Deck arch bridge

- ightarrow Deck girder positioned at top of arch
- \rightarrow Arch supports deck via spandrel columns
- \rightarrow Solid-spandrel arches or trussed arches are also used (figures)
- \rightarrow Full arch thrust transferred to arch abutments

26

11.04.2023

Zuoz bridge, Switzerland, 1901. Robert Maillart

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: left: https://structurae.net/; rigth © Georg Aerni

Deck arch bridge example

- Reinforced concrete
- Clamped arches
- *l* = 390 and 244 m
- *f*/*l* = 1 / 5.82 and 1 / 4.47

27

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

J. Radic, et. Al.: "Krk bridge consists of two large reinforced concrete arch spans providing a fixed road link to the island of Krk. The larger 390-m span when completed in 1980 extended the world record of reinforced concrete arch bridges from 305 m of Gladesville bridge in Sydney, Australia by more than 80 m.

This is still the largest conventional reinforced concrete arch bridge in the world [note: today, it is still the world's third largest concrete arch, after Qinglong Railway Bridge with 445 m (2016) and the Wanxian bridge with 420 m (1997), both in China]. The span of the smaller arch is 244 m.

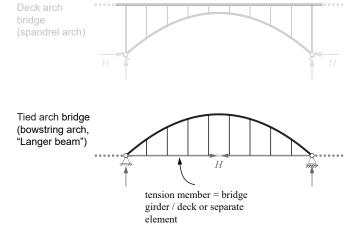

Both arches have a three-cell box cross-section of constant external dimensions: 8 m wide and 4 m deep for the smaller, and 13 m wide and 6,5 m deep for the larger one. The superstructure of the Krk bridge was designed as a series of simply supported grillages comprising three precast prestressed concrete girders joined by cross beams at the supports and in the thirds of spans. The deck plate is only 13 cm thick and was constructed of precast panels with cast-in-place joints at the longitudinal and cross girders. The columns were designed extremely slender in order to reduce the weight carried by the arches as much as possible. They were erected by slip forming. To achieve exceptionally large spans, it was necessary to reduce the dead load as much as possible. The structural members of minimum statically admissible dimensions were utilised, with very small concrete cover of 2,5 cm. Later testing revealed that even smaller concrete cover was executed at some locations."

Illustration: adapted from J. Radic, et. Al., Repair of the Krk arch bridges, Conference and Brokerage Event. 2006. Photos: Wikipedia

- Structurally, it makes more sense to distinguish arch typologies based on the way the arch thrust *H* (horizontal component of arch normal force) is resisted.
- Arches are most efficient if the arch thrust is carried by the ground ("true arches"), which requires stiff soil
 - → principle of masonry arch bridges (note: high self-weight is beneficial for foundations as it reduces the inclination of the support reaction)
 - ightarrow principle of deck arch bridges
- Alternatively, the arch thrust can be resisted by a tension member connecting the supports (along springing line)
 - \rightarrow structurally less efficient, since arch thrust must be resisted in tension
 - \rightarrow principle of tied arch bridges:
 - ... deck = tension member (more efficient) or
 - ... separate tension member parallel to deck (less efficient)
 - \rightarrow externally, a tied arch is a simply supported beam

11.04.2023

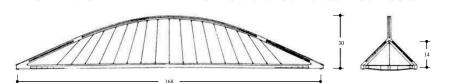
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

28

Tied arch bridge:

- \rightarrow Arch positioned above deck
- \rightarrow Deck suspended by arch via hangers
- \rightarrow Arch thrust fully resisted by deck $(\rightarrow$ "externally", it is a simply supported beam)
- \rightarrow Known in German speaking countries as Langer beam (Langerscher Balken) or "versteifter Stabbogen"

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: Puente sobre el río Guadalete, La Barca de la Florida (Jérez de la Frontera), M. Martínez, 1926. Three steel tied arches with 60 m span, total length 180 m. Arches stiffened with X-bracings (built under supervision of J. Botín and E. Torroja, located next to Eduardo Torroja's Acueducto de Tempul).

Photos kfm

Tied arch bridge example

- Steel arch
- Simply supported (arch + deck = "girder")
- *l* = 168 m
- *f*/*l* = 1 / 5.60

30

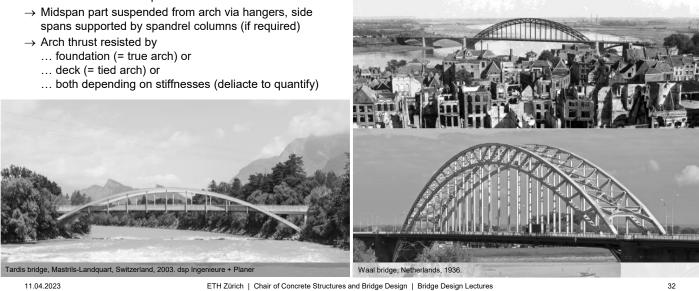
arqueta bridge, Sevilla, Spain, 1992. J.J. Arenas and M.J. Pantaleón
11.04.2023 ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

An eminent example of tied arch bridges is the Barqueta bridge crossing the Guadalquivir river (Meandro de Ranillas) in Seville, Spain. Unlike typical tied arch bridges, the Barqueta bridge has only one central arch (similar to the Tercer Milenio bridge, Zaragoza, Spain, 2008), where the arch is split by triangular frames into two legs creating "entrance portals" for the users. Thereby, the deck is not separated into two halves by the central arch. The innovative design of the Barqueta bridge is convincing, as it combines functionality and aesthetics.

Illustration adapted from Revista de Edificación (RE), N° 7, July 1990

Photos: kfm

Through arch • In through arch bridges, the thrust may be resisted bridges \rightarrow by the foundations as in a deck arch (true arch) no (longitudinal) connection ... functioning Н \rightarrow by a tension member connecting the supports as in a of arch and deck as true arch tied arch • If the thrust is resisted by the foundations (true arch, ... as true arch upper figures), the structural system corresponds to a with side span on inclined pier deck arch, with the following aspects to be considered: no (longitudinal) connection \rightarrow arch must pass deck without transferring longitudinal H of arch and deck forces → mix of hangers+spandrel columns (different stiffness) ... as through If the thrust is resisted by the deck, different layouts are • arch with struts possible (bottom figures): Н connecting arch no (longitudinal) connection \rightarrow through arch with struts transferring thrust to deck and deck of arch and deck horizontally \rightarrow tied arch supported on cantilevered structure In either case, such through arches are significantly more complex in design and construction than deck or ... as tied arch tied arches. supported on V-Н struts vertical support of tied arch The structural concept of through arches is often hard to • (longitudinally movable identify: They lack the logic of form other arches bearing on one side)


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

31

Through arch bridge:

ightarrow Deck and arch overlap in elevation

Photos: left © dsp; right: Wikipedia (top: "The Waal bridge and north-east central Nijmegen, damaged during the battle. Photo taken on 28 September 1944 from the Dominican Church")

Through arch bridge example

- Steel arch
- Clamped true through arch
- *l* = 329 m
- f/l = 1/4.7

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

33

right:

Photos: left:https://www.flickr.com/photos/cedwardbrice/23907070443/; https://www.flickr.com/photos/cmhpictures/46625020241

Through arch bridge example

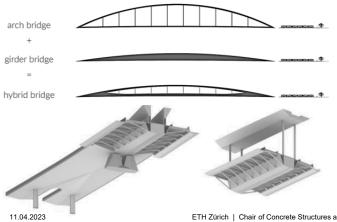
- Steel arch on concrete V-struts
- Tied through arch •
- *l* = 420 m •
- f/l = 1/4.4

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

VVV

34

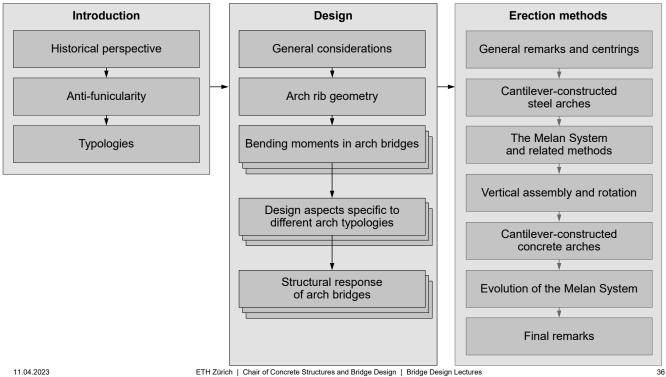

Water level 162,960 m (normal)

Photos and illustrations: Man-Chung Tang, Guolei Ren, "Design and Construction of the Main Spans of the Chongqing Caiyuanba Bridge, China," Structural Engineering International, 20:3, 2010, 296-298

Slender tied arches are sometimes termed "hybrid arch bridges".

However, while the solutions are attractive, this term is technically ill-founded, see structural response).

(in any arch bridge, arch and deck share the applied loads (arch in bending and arch action, girder in bending). In flat arches, the deck simply carries a larger portion of the applied loads).



Tender design: Bridge over Danube River, Hungary, 2018. Fhecor Ingenie

35

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustration and rendering from © Fhecor Ingenieros http://fhecor.es

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges

Design

11.04.2023

Arch bridges

Design – General considerations

11.04.2023

- Arches are very efficient structures in their final configuration, but
 - \rightarrow arch action is only activated at closure
 - → arch centrings are expensive (tailor-made falsework and formwork)
 - → efficient erection methods important in any structure are particularly important in arches
- Arch bridges built by cantilevering are considered economical for spans 100 m ≤ l ≤ 300 m (200 m for concrete arches)
 - → for shorter spans, girders are more economical (cost of arch is not compensated by savings in the deck girder)
 - \rightarrow for longer spans, cable-stayed bridges are more economical due to the efficient erection method
 - → longer spans may be economical if an optimised erection method is used (e.g. CFST arches, see erection methods)
- Other reasons, particularly aesthetical considerations, may still justify arch bridges

11.04.2023

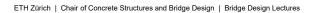
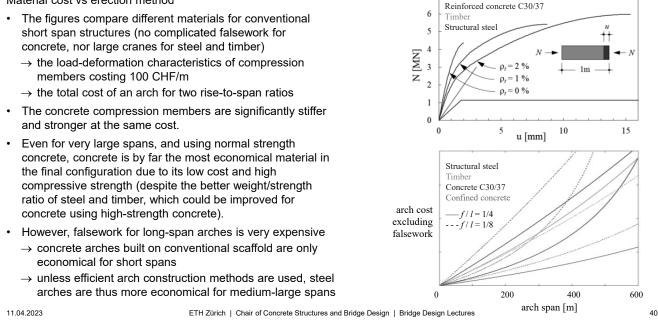



Photo: Viaducto de Almonte, Arenas & Asociados (J.J. Arenas, G. Capellán, M. Sacristán), High Speed Line Madrid-Extremadura-Portugal, Cáceres, Spain (2016, line in service 2022). High speed train concrete deck arch bridge, main span 384 m, total length 996 m, f/L = 1/5.7. Hollow box high strength concrete arch, prestressed concrete box girder.

Photo © kfm

Material cost vs erection method

For the calculation of the total arch cost, a characteristic uniform load of 200 kN/m (ca. 12 m wide deck girder, spandrel columns, traffic load) has been assumed in addition to the arch self-weight.

Input data for cost calculation of compression members:

Material	<i>E</i> [GPa]	<i>f_{c,} f_y</i> [MPa]	ρ [kg/m³]	[CHF/kg]	[CHF/m ³]
Concrete	30	30	2400	0.251)	600 ¹⁾
Reinforcing steel	200	500	7850	1.50 ²⁾	11775 ²⁾
Structural steel	200	360	7850	4 ³⁾	31400 ³⁾
Timber	10	30	500	2 ⁴⁾	10004)

1) incl. formwork

2) Incl. erection

3) incl. coating and erection

4) incl. erection and connectors

Element	<i>A</i> [m ²]	<i>m</i> [kg]	<i>N_u</i> [MN]	<i>m / N_u</i> [kg/MN]
Reinforced Concrete ^{5,6)} $\rho_t = 0$ %	0.130	323	4.37	74
Reinforced Concrete ^{5,6)} ρ_t = 1 %	0.100	263	5.41	49
Reinforced Concrete ^{5,6)} ρ_t = 2 %	0.081	226	5.97	38
Structural steel	0.003	25	1.15	22
Timber	0.100	50	3.00	17

5) incl. 1% active and 0.5% inactive longitudinal reinforcement

6) circular Cross-Section

• An example of a bridge where higher cost of an arch bridges was justified by the superior aesthetics quality and where a steel truss arch was more economical than a concrete arch (lighter weight = erection by stayed cantilevering of the arch possible, see erection methods – is the New River Gorge Bridge (1977, record span arch bridge until 2012).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

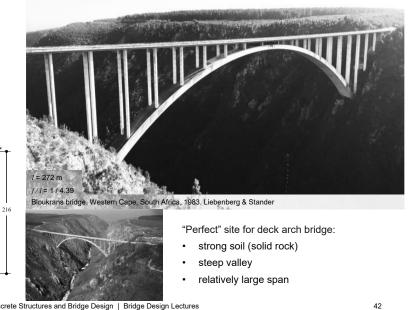

41

Photo: https://www.reddit.com/r/WestVirginia/comments/6jyhh7/new river gorge bridge/

Deck arch bridges (and true arch through arch bridges) transfer important horizontal forces - the arch thrust - to the foundations, which is the most efficient solution. However

- \rightarrow the viability of deck arch bridges depends on the soil conditions
- \rightarrow the arch thrust increases with decreasing rise-to-span ratios f/l
- \rightarrow Long span and slender arches require solid rock at the arch abutments

272

11.04.2023

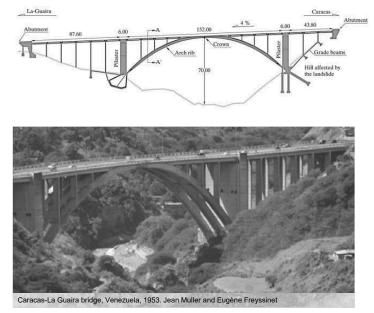

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustration adapted from http://www.highestbridges.com/

Photo: top: A. Giraldo Soto; bottom: Wikipedia

- If true arch bridges are built in inadequate sites (soft soil, unstable slopes), consequences may be drastic.
- This is particularly due to their sensitivity to (horizontal) movements of the arch abutments
 - → horizontal movements of the arch abutments cause changes in the horizontal reaction = deviations of the thrust line and corresponding bending moments along the arch
 - → the importance of these effects depends on the magnitude of the movements and the rise-to-span ratio f/l (see structural response).

43

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

At the Guaira Bridge, Freyssinet built a two-hinged arch, both for the requirements of the foundation of one of the slopes and because it was the first bridge to be built by cantilever construction using temporary stays: Hinges at the arch abutments allowed correcting the alignment during the construction process. Modern arches are usually cantilevered with clamped abutments from the beginning, which requires an accurate determination of pre-camber during the erection process.

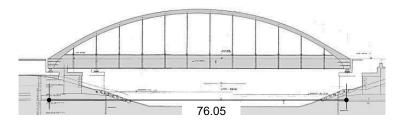
Illustration adapted from L.B. Fargier Gabaldón, Rehabilitation and Lessons Learned from the Collapse of Viaduct 1 Located on the Caracas–La Guaira Highway in Venezuela. Structural Engineering International Nr. 3/2017.

Photos:

left: https://www.flickr.com/photos/fitosumbate/1429928079/lightbox/

right: https://civilgeeks.com/2011/08/09/viaducto-caracas-la-guaira-una-obra-100-venezolana-4/

Photos of the bridge a few hours before it collapsed: https://www.flickr.com/photos/lubrio/115137384/in/photostream/


- Tied arch bridges, on the contrary, are simply supported girders "externally" (the deck girder acts as tension member = tie, only vertical reactions under gravity load)
 - \rightarrow suitable for locations with soft soil
 - → generally worth considering in single-span bridges (more transparent than simply supported standard girder bridges)
 - \rightarrow generally appropriate for single-span bridges with low clearance above traffic lines
 - → particularly suitable for bridges spanning rivers where often the following conditions apply:
 - ... low clearance above flood level
 - \ldots no piers in river possible
 - \ldots soft soil layers to considerable depth
- The elements connecting deck and arch are often pin-jointed, acting in pure tension
- → referred to as "hangers" (even if they carry bending moments, see design)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

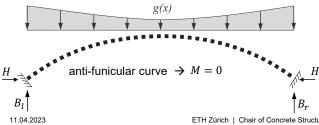
45

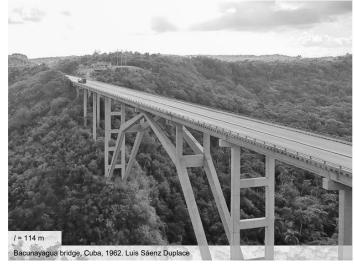
Photo © Georg Aerni.

Entitikariabitucke bibenikopi, Ziegebrucke-weesen, 1907. SDB i

46

The different parameters are grouped into the categories shown on the slide.


Arch bridges


Design – Arch rib geometry

11.04.2023

Arch bridges – Design: Arch rib geometry

- Most of the following slides show deck arches, but they equally apply to tied arches unless indicated otherwise.
- The arch axis should closely correspond to the thrust line due to permanent load, such that no bending moments are caused by this (usually most important) action
 - \rightarrow arch geometry geometrically similar to funicular polygon of permanent loads
- The arch is not uniformly loaded, but rather, receives most loads via the spandrel columns
 - \rightarrow "classic" curved arch reasonably anti-funicular only for closely spaced columns (8...10 over span)
 - \rightarrow if fewer spandrel columns or hangers are provided, a polygonal arch geometry should be chosen

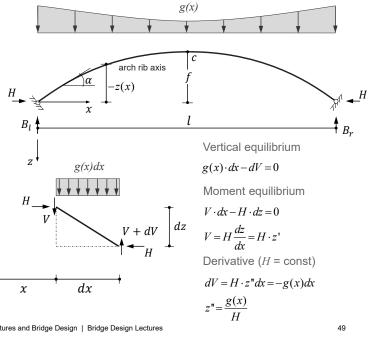
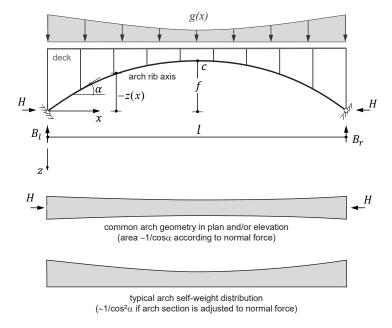

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photo: http://esculturasymonumentos.com/c-cuba/puente-de-bacunayagua/

Arch bridges – Design: Arch rib geometry

Determination of the geometry of the arch

- The analytical equation to determine the anti-• funicular geometry for a given load g(x) is a 2nd order ordinary differential equation (see figure).
- The arch thrust *H* (horizontal component of arch normal force) is constant if only vertical loads act.
- For any value of the arch thrust H > 0, (positive H =compression in arch rib), an anti-funicular geometry is obtained (all are geometrically similar):
 - \rightarrow small $H \leftrightarrow$ large rise f (high arch)
 - \rightarrow large $H \leftrightarrow$ small rise f (low arch)
- If the arch axis (centre of gravity of the arch rib) coincides with the resulting curve, the load g(x)causes pure compression in the arch rib.


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges - Design: Arch rib geometry

Determination of the geometry of the arch

- Generally, the differential equation has to be integrated numerically since g(x) is not constant:
 - \rightarrow the self-weight of the arch is proportional to 1/cos α (relevant weight: per horizontal length)
 - → the arch normal force for constant thrust *H* is also proportional to 1/cosα; the arch section is often increased towards the springing lines accordingly (→ arch self weight increasing ≈ with 1/cos²α)
 - → point loads applied by spandrel columns differ even if "smeared" over column spacing due to varying column height
- The "exact" anti-funicular geometry can be determined numerically in many different ways, even accounting for arch compression / second order effects (geometrical non-linearity).
- On the following slides, a method for determining the funicular curve by simple hand calculations, useful for pre-dimensioning, is presented.

11.04.2023

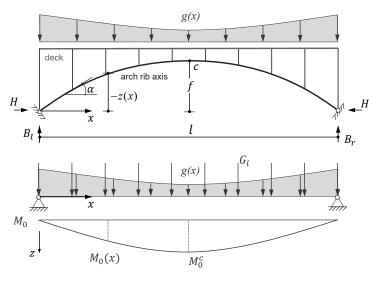
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges – Design: Arch rib geometry

Determination of the geometry of the arch

- 1. Determine the bending moments $M_0(x)$ in a simply supported girder (span = arch span), loaded by all permanent loads of the arch (arch rib, spandrel columns, deck girder, superimposed dead load)
- 2. The bending moments in the arch rib $M^{A}(x)$, differ from $M_{0}(x)$ by the moment due to the horizontal thrust *H*:

$$M^{A}(x) = M_{0}(x) + H \cdot z(x)$$


3. Imposing the condition $M^4 = 0$ (anti-funicularity), with the bending moment at the crown $M_0^c = M_0(l/2) = H \cdot f$, the arch thrust = reaction *H* and the anti-funicular geometry z(x) follow for a chosen value of the rise *f*:

$$\begin{array}{c} z(x) = -\frac{M_0(x)}{H} \\ H = \frac{M_0^c}{f} \end{array} \right\} \quad z(x) = -\frac{M_0(x)}{M_0^c} f$$

(as postulated, the anti-funicular geometry is geometrically similar to the funicular polygon)

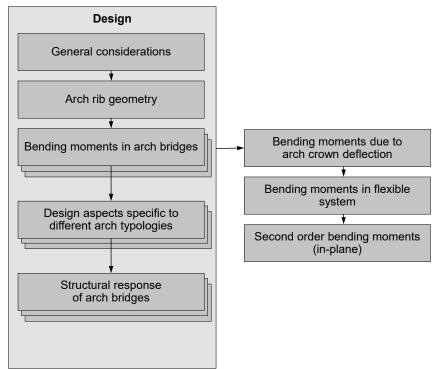
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges - Design: Arch rib geometry

Determination of the geometry of the arch

- An iterative procedure is required since the weights of the arch rib and spandrel columns depend on the geometry of the arch rib.
- As a first approximation in preliminary design, the mean permanent loads g
 over the entire length of the arch can be used for further simplification.
- Hence, the arch is subjected a uniformly distributed load (corresponding to the total permanent load of the structure supported by the arch divided by its span), resulting in a quadratic parabola for the arch axis:


$$H(\overline{g}) \cong \frac{\overline{g} \cdot l^2}{8f} \qquad z(x) = -\frac{8f}{\overline{g} \cdot l^2} M_0(x)$$

And the axial force in the arch is:

$$N(\overline{g}) = -\frac{H(\overline{g})}{\cos \alpha}$$

11.04.2023

g(x)¥ deck С arch rib axis $M_0(x)$ Jα Η M_0^c Η \hat{x} 1 4 B_l Br G_i g(x)x M_0 Ζ $M_0(x)$ M_0^c \overline{g} mean permanent load \rightarrow ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures 52

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges

Design – Bending moments due to arch crown deflection

("Biegemomente infolge Scheiteleinsenkung")

11.04.2023

Deflections due to horizontal support displacements ΔI

Three-hinged arch with horizontal support displacement

Arches can accommodate horizontal support displacements ΔI with little axial restraint by adjusting their shape

A contraction (and, with opposite sign, expansion) of the arch

rib due to imposed deformations ε (temperature change, shrinkage, ...) has a similar effect as horizontal support

 $\delta^c = \Delta l \frac{\iota}{4f}$

 $\delta^c \approx \Delta l \frac{l}{\Lambda}$

 $\delta^c \approx \varepsilon \cdot l \cdot \frac{l}{4f}$

- \rightarrow deflection at arch crown δ^c
- \rightarrow stress-free arch crown deflection in three-hinged arches (see figure):
- \rightarrow causing bending moments in two-hinged and fixed arches, similar arch crown deflection:

Deflections due to imposed deformations $\boldsymbol{\epsilon}$

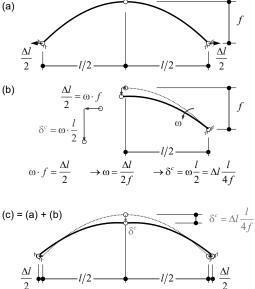
With $\Delta I = \varepsilon I$, the deflection of the

crown is approximately equal to: (exact for three-hinged arch)

2 l/22 $\frac{\Delta l}{2}$ (b) $= \omega \cdot f$ δ^c 1/2 $\frac{\Delta l}{2 f}$ $\rightarrow \delta^c = \omega \frac{l}{2}$ $\omega \cdot f$ $\rightarrow \omega =$ $= \Delta l$ (c) = (a) + (b) δ^{c} $=\Delta l$ Δl Δ

11.04.2023

displacements

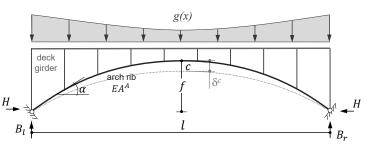

•

•

•

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustration: P. Marti, Theory of Structures.



Deflections due to arch compression N/EA

- The arch rib is axially very stiff, but not perfectly rigid
 → arch rib is compressed by arch normal force
 - → deflections under permanent load even if a perfectly anti-funicular geometry has been chosen
- In preliminary design, the vertical deflection of the arch crown due to permanent loads *g* can be estimated as:

$$\delta^{c} \cong \frac{H(\bar{g})}{EA^{A,c}} \cdot l \cdot \frac{1 + 3(f/l)^{2}}{4f/l} \qquad \text{(for } EA^{A} = EA^{A,c} = \text{const.)}$$
$$\delta^{c} \cong \frac{H(\bar{g})}{EA^{A,c}} \cdot l \cdot \frac{l}{4f} \qquad \text{(for } EA^{A} = \frac{EA^{A,c}}{\cos \alpha} \to \frac{H(\bar{g})}{EA^{A}} \approx \text{const.)}$$

where $A^{A,c}$ = cross-sectional area of arch at the crown (lower equation = previous slide with $\varepsilon = \frac{H(\bar{g})}{EA^{A,c}}$)



NB. The deflections due to arch compression (caused by dead load, imposed deformations or displacements) are much higher in flat arches (low ratios *fl*):

$\frac{f}{l}$	$\frac{l}{4f}$	$1 + 3\left(\frac{f}{l}\right)^2$	$\frac{1{+}3(f/l)^2}{4f/l}$			
1/2	0.5	1.750	0.875	(example: for $f/I = 1/8$,		
1/4	1.0	1.188	1.188	the crown deflects twice		
1/6	1.5	1.083	1.625	as much as the arch rib		
1/8	2.0	1.047	2.094	contracts)		
1/10	2.5	1.030	2.575			
1/12	3.0	1.021	3.063	(see also diagram on		
1/14	3.5	1.025	3.554	slide 120, case study)		
1/16	4.0	1.012	4.047			

11.04.2023

Bridge Design | Bridge Design Lectures

These moments produced in the girder must be superimposed with the fixed system moments (deck as continuous girder supported by stiff spandrel columns).

Bending moments due to arch compression

- Bending moments due to arch compression generally occur in arches built on conventional centrings.
- In concrete arches, the crown deflection increases with time due to creep, but the bending moments remain constant (one casting system, see Advanced Structural Concrete)
- If the arch is lifted off the formwork by opening it in the crown (with hydraulic jacks, see figure), or the arch is built by stay cantilevering, the arch rib is already compressed at closure
 - \rightarrow no crown deflection at *t* = 0 (time of closure), but
 - → in concrete arches, crown deflections and corresponding bending moments build up over time due to creep
 - → bending moments of up to 80% of the values of the arch built on centring (= one casting system, see Advanced Structural Concrete) can result at $t = \infty$
- The benefit of opening concrete arches in the crown can be increased if the jacks are kept installed, adjusting the jacking force over a long period of time (as done e.g. in the Krk Bridges during 5 years, see section *Erection*).

58

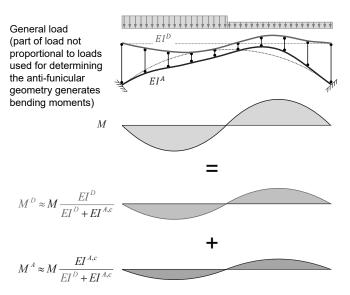
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: Opening the arch of the Puente del Tercer Milenio, Zaragoza, in the crown (Arenas y Asociados, 2008, 216 m span. In this case, the jacking force of 120 MN (corresponding to about 80% of the permanent loads at the time of jacking) was not used to lift the arch off the formwork, but primarily to simplify the subsequent tensioning of the hangers).

Arch bridges

Design – Bending moments in flexible system

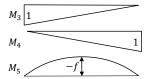

11.04.2023

General behaviour - Load sharing

- Under loads causing bending moments in the arch (not proportional to loads used for determining the anti-funicular geometry), the system acts like a flexible frame
 - → deflections of arch rib and deck girder equal (deck arch, stiff columns) or very similar (tied arch, flexible hangers)
 - → bending moments shared among deck girder and arch rib in proportion to their stiffness
- Generally, the bending stiffness of deck girder and arch rib is of similar magnitude, and both elements carry a portion of the total bending moments, see figure.

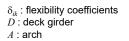
Note that this "load sharing" also applies to the bending moments due to arch compression, as these are proportional to the stiffnesses as well.

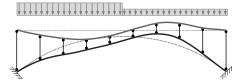
11.04.2023

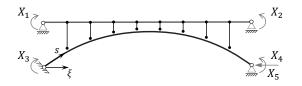


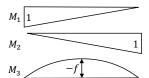
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Solution using force method - General case

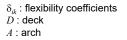

- Basically, the bending moments in the flexible system can be determined using the force method
 - \rightarrow select isostatic basic system and introduce redundant variables
 - \rightarrow determine flexibility coefficients
 - \rightarrow formulate compatibility and solve for redundant variables
- However, even if the columns (hangers) are idealised as pinjointed members, the solution is tedious in the general case
 - \rightarrow use frame analysis software
 - \rightarrow for preliminary design, estimate bending moments using values shown on slide 63


Redundant moments:

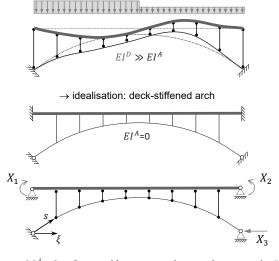



Solution using force method – Deck-stiffened arches

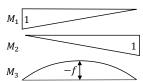
- If the bending stiffness of the deck girder is much higher than that of the arch rib, the latter can be neglected
 - \rightarrow "deck-stiffened arch"
 - \rightarrow bending moments carried (almost) by the deck girder alone
 - \rightarrow reduced degree of statical indeterminacy
- If the columns (hangers) are idealised as pin-jointed members, the system is three times statically indeterminate
 → solution using force method possible, but obsolete

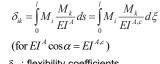

 - \rightarrow use frame analysis software
 - \rightarrow for preliminary design, estimate bending moments using values shown on slide 63

Redundant moments:

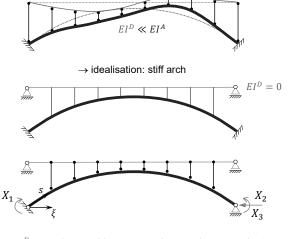

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

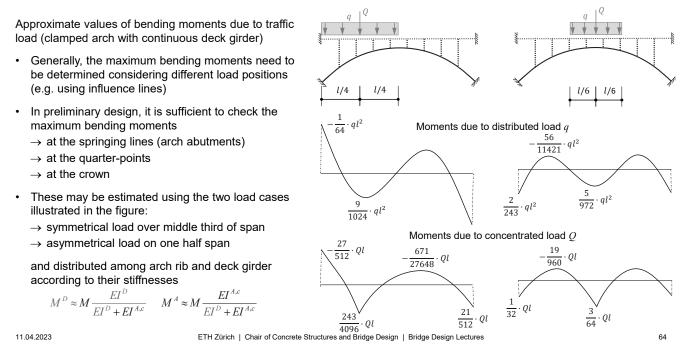

 $M^{A} = 0$ (but consider moments due to arch compression!)


Solution using force method - Stiff arches

- If the bending stiffness of the deck girder is much lower than that of the arch rib, the former can be neglected
 - \rightarrow "stiff arch"
 - \rightarrow bending moments carried (almost) by the arch rib alone
 - \rightarrow reduced degree of statical indeterminacy
- If the columns (hangers) are idealised as pin-jointed members, the system is three times statically indeterminate
 → solution using force method possible, but obsolete


 - \rightarrow use frame analysis software
 - \rightarrow for preliminary design, estimate bending moments using values shown on slide 63

Redundant moments:


 δ_{ik} : flexibility coefficients *D*: deck *A*: arch *A*,*c*: arch at crown

 $M^{D} = 0$ (but consider moments due to arch compression!)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Note that these load cases do not give the extreme values of the internal forces. Additional load cases must be considered in detailed design.

Arch bridges

Design – Second-order bending moments

11.04.2023

Arch bridges – Design: Second order bending moments

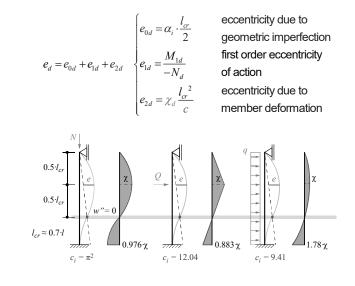
Arches are compression members In-plane buckling of (deck) arch \rightarrow in addition to the (first order) moments in the flexible system, see previous slides, second order bending moments must be considered unless the arch is very stiff and they are negligible \rightarrow for deck arches, second order analysis can usually be limited to in-plane bending moments (deck girder provides lateral stability) \rightarrow for tied arches, out-of-plane stability (transverse buckling of the arch resp. corresponding 2nd order bending Approximate in-plane EI_d $-N_{c}$ moments) are typically more critical buckling length and deflected shape • In detailed design, a second-order analysis is carried out, (clamped-hinged) assuming suitable imperfections (see substructure chapter) l/2 and the governing load positions, which typically are: \rightarrow in-plane stability: traffic load in one half-span - N e_d 0.73 e \rightarrow out-of-plane stability: traffic load in full span Maximum eccentricity 0.72 *e*_d In the preliminary design of deck arches, it is sufficient to • 1/2 consider anti-symmetrical in-plane buckling see figures and next slide. 11.04.2023 ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures 66

The critical load case for in-plane buckling normally consists of dead load plus live load applied to one half of the arch span. For out-of-plane buckling (tied arches), live load applied over the full span is usually more critical.

Arch bridges – Design: Second order bending moments (in-plane)

- In the preliminary design of concrete deck arches, 2nd order in-plane bending moments can be determined using the curvature based method of SIA 262, see substructure chapter, considering arch rib and deck girder together as a compression member.
- If the deck is prestressed and the arch stiffness increases towards the abutments in line with the arch normal force, i.e. $EI^{A,c}$

$$EI^{A}(x) \approx \frac{EI}{\cos \alpha(x)}$$

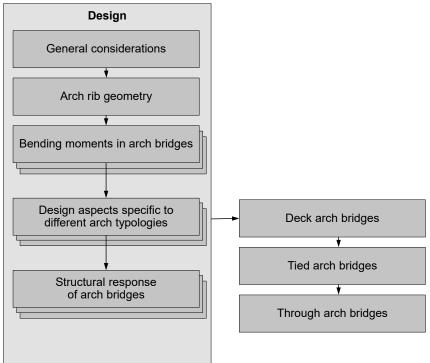

a constant bending stiffness may be assumed:

$$EI_{d} \cong \frac{1}{4} \left(EI^{A,c} + EI^{D} \right) \rightarrow \chi_{d} = 4 \frac{M_{Rd}^{A,c} + M_{Rd}^{D,}}{EI^{A,c} + EI^{D}}$$

- The first-order eccentricities correspond to the bending moments for traffic load on one half span (previous slides), and the total eccentricity is as usual: $e_d = e_{0d} + e_{1d} + e_{2d}$
- The *c*-factors (superposition of actions) are given in the figure, and the resulting bending moments are resisted by arch rib and deck girder jointly, i.e.

 $M^{D} \approx -N_{d}e_{d} \cdot \frac{EI^{D}}{EI^{D} + EI^{A,c}} \quad M^{A} \approx -N_{d}e_{d} \cdot \frac{EI^{A,c}}{EI^{D} + EI^{A,c}}$

Approximate verification of in-plane 2nd order moments in deck arch



11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

67

Note that the assumed stiffness differs from that usually adopted in compression member design, since the prestressed deck girder is beneficial.

11.04.2023

Arch bridges

Design – Deck arch bridges

11.04.2023

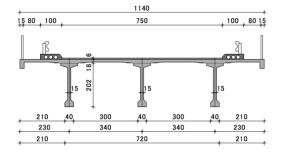
Arch bridge – Design: Deck arch bridges

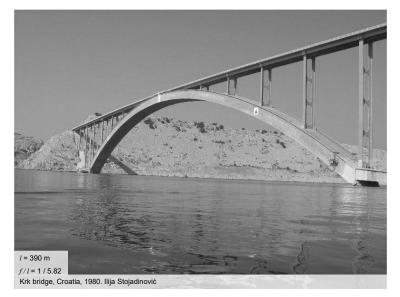
Deck girder – General

- The deck girder is supported by the arch through the axially stiff spandrel columns
- \rightarrow deck girder and arch share the same deflections
- → the cross-sections of girder and arch must be chosen in consideration of their interaction:
 ... stiff arch ↔ slender deck girder
 - \dots slender arch \leftrightarrow stiff deck girder
- \rightarrow the stiffness ratio of deck and arch EI^D/EI^A is highly relevant for the structural response
- The girder depth is usually kept constant over the entire length of the bridge, and the girder needs to resist additional bending moments due to frame action (crown deflects due to arch compression, see structural response)
 - \rightarrow less slender than in girder bridges
 - \rightarrow for prestressed concrete 1/15 $\leq h/l \leq 1/12$

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


70


Photo: Wikipedia, Tilos bridge, Spain, 2004. S. Pérez-Fadón Martínez and J.E. Herrero Benítez

Arch bridge – Design: Deck arch bridges

Deck girder - Cross-section

- For reasonably stiff arches (*EI^D* << *EI^A*), double-T or solid slab deck girders can be used, regardless of the arch span
 - \rightarrow frame moments primarily resisted by arch
 - \rightarrow bending moments in the girder depend mainly on the spandrel column span
 - → behaviour similar to continuous girder bridges (hogging moments ≈ 2·sagging moments)

71

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustration: adapted from C. Ieva, Practical Optimization Strategies In Cantilever Launching Method of Arch Bridges, Politecnico di Milano, 2014. Photos: Wikipedia

Arch bridge – Design: Deck arch bridges

Deck girder - Cross-section

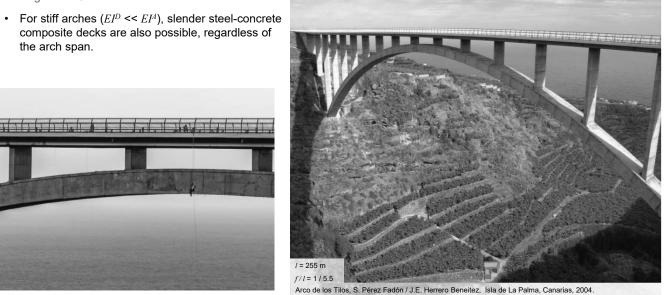

- For reasonably stiff arches (*EI^D* << *EI^A*), double-T or solid slab deck girders can be used, regardless of the arch span
 - \rightarrow bending moments in flexible system primarily resisted by arch rib
 - \rightarrow bending moments in the deck girder depend mainly on the spandrel column span
 - → behaviour of deck girder similar to continuous girder bridges (hogging moments \approx 2·sagging)

Illustration: adapted from J. Manterola, Puentes II. Photo: https://www.wikiwand.com/en/Obere Argen

Deck girder - Cross-section

composite decks are also possible, regardless of the arch span.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

73

Arco de los Tilos, S. Pérez Fadón and J.E. Herrero Beneitez, San Andrés y Sauces, Isla de La Palma, Canarias (2004). Concrete hollow section arch with steel-concrete composite deck, deck arch, span 255 m, length 353 m, 150 m above ground.

Photo © Ferrovial 1 Detail photo © https://diariodeavisos.elespanol.com/wpcontent/uploads/2019/02/rapel2.jpeg

Deck girder - Cross-section

- In flexible arches (EI^D ≈ EI^A or even EI^D > EI^A), the stiffness of the deck girder has a significant influence on the behaviour of the frame system
 - → significant part of frame moments resisted by deck girder
 - \rightarrow higher deck girder stiffness required
 - \rightarrow box girder cross-sections for deck of long-span arches
 - → sagging and hogging moments in the girder of similar magnitude over the entire length of the arch

Veitshöchheim viaduct, Germany, 1986. ILF Beratende Ingenieure & Leonhardt, Andrä und Partner

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

74

Photo: https://mapio.net/pic/p-49715382/

NB. Aesthetics (arch abutments in river)?

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

75

Photo:

https://commons.wikimedia.org/wiki/File:Maintalbr%C3%BCcke Veitsh%C3%B6chheim von S%C3 %BCden, 5.jpeg

NB. Aesthetics (arch abutments on shore)!

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photo: Viaducto del Embalse de Alcántara, CFCSL (Carlos Fernández Casado S.L., J. Manterola, A. Martinez Cutillas), High Speed Line Madrid-Extremadura-Portugal, Cáceres, Spain (2016, line in service 2022). High speed train concrete deck arch bridge, main span 324 m, total length 1488 m, f/L = 1/5.7. Hollow box high strength concrete arch, prestressed concrete box girder.

Photo © kfm

- · Concrete deck girders are commonly fully prestressed for permanent loads
 - \rightarrow higher, uncracked stiffness improves global stability of the frame system (cracked-elastic second-order analysis is subjected to many uncertainties)
 - \rightarrow enhanced durability

11.04.2023 Portial plan

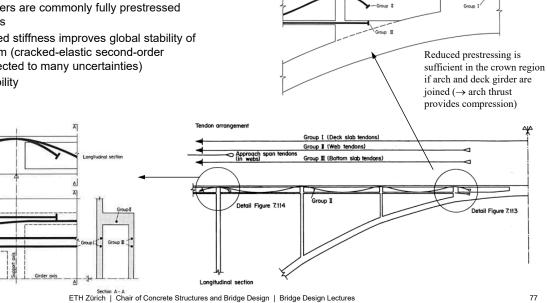


Illustration adapted from C. Menn, Prestressed Concrete Bridges, 1990.

Arch rib

the supports \rightarrow a strong soil is ideal

standard arch

(common range)

 $1/4 \ge f / l \ge 1/7$

on the supports and hinge arrangement:

the ratio of rise-span f/l

high arch

f/l = 1/2

clamped arch

two-hinged arch

three-hinged arch

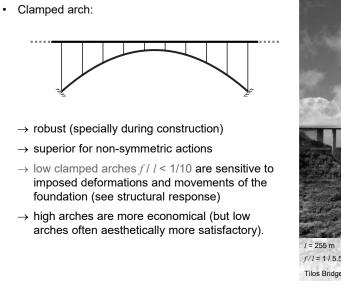
The arch transmits a significant horizontal reaction to The structural response of the arch depends strongly of low arch f / l < 1/10The structural response of the arch depends strongly l = 255 mf/l = 1/5.5

Tilos Bridge, Spain, 2004. S. Pérez-Fadón Martínez and J.E. Herrero Benítez

78

11.04.2023

•


•

•

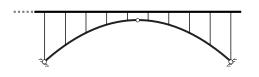
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photo: Wikipedia, Tilos bridge, Spain, 2004. S. Pérez-Fadón Martínez and J.E. Herrero Benítez

Arch rib

Tilos Bridge, Spain, 2004. S. Pérez-Fadón Martínez and J.E. Herrero Benítez

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

79

Photo: Wikipedia, Tilos bridge, Spain, 2004. S. Pérez-Fadón Martínez and J.E. Herrero Benítez

Arch rib

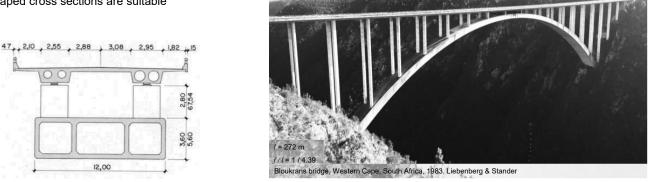
• Two and three hinged arches:

- → hinges should basically be avoided (maintenance), but
- → if substantial movements of the foundations are expected, hinges at the springing lines may be beneficial (avoid high bending moments in the arch rib, see structural response)
- → hinges at the crown should be avoided where possible (durability, construction process)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

80


Photo: https://www.flickr.com/photos/casiopea15/28241837679

Arch rib

Usual cross sections of large-span arch ribs are:

- · Hollow sections (single- or multi-cell)
 - ... low weight
 - ... high stiffness (radius of gyration I/A)
- Trusses (in steel bridges)

For shorter spans l < 150 m, solid cross sections or U-shaped cross sections are suitable

81

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

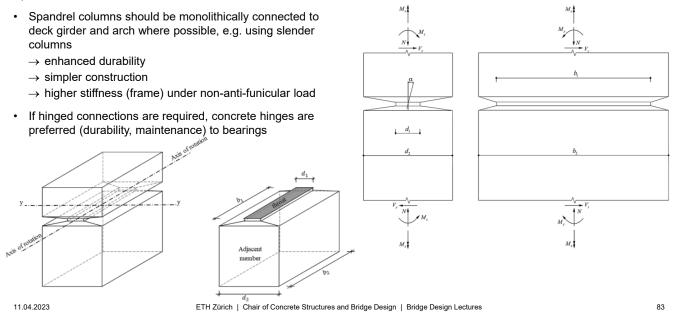
Illustration: adapted from C. Ieva, Practical Optimization Strategies In Cantilever Launching Method of Arch Bridges, Politecnico di Milano, 2014. Photo: A. Giraldo Soto

Arch rib

Usual cross sections of large-span arch ribs are:

- Hollow sections (single- or multi-cell)
 - ... low weight
 - ... high stiffness (radius of gyration I/A)
- Trusses (in steel bridges)

For shorter spans l < 150 m, solid cross sections or U-shaped cross sections are suitable


82

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustration: Puente sobre el río Ain, Informes de la Construcción Vol. 15, nº 147 Enero, febrero de 1963. Photos: <u>https://structurae.net/en/structures/serrieres-sur-l-ain-bridge</u>

Spandrel columns

Design of concrete hinges usually according to: Leonhardt, F., Mönnig, E., "Vorlesungen über Massivbau. Teil 2: Sonderfälle der Bemessung im Stahlbetonbau", Springer, 1986. Marx, S., Schacht, G., "Betongelenke im Brückenbau – Bericht zum DBV-Forschungsvorhaben 279", Deutscher Betonund Bautechnik-Verein E.V, 2010.

Illustration adapted from Tomislav Markic

Spandrel columns

- Spandrel columns should be monolithically connected to deck girder and arch where possible, e.g. using slender columns
 - \rightarrow enhanced durability
 - \rightarrow simpler construction
 - \rightarrow higher stiffness (frame) under non-anti-funicular load
- If hinged connections are required, concrete hinges are preferred (durability, maintenance) to bearings

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

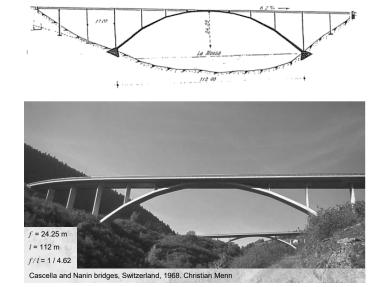

Photo: © TBA Kanton St. Gallen

Photo: © TBA Kanton St. Gallen

Stiffness of deck girder vs arch rib

- Basically, the required bending stiffness (stability, flexible system moments) can be arbitrarily allocated to the arch rib or the deck girder
- Concrete arch ribs have a high moment capacity without extra cost due to the compressive normal force, and a high stiffness *EI*⁴ of the arch rib is also favourable during construction
 - → for structural efficiency, the concrete arch rib should be stiffer in bending than the deck (such that it will carry most of the moments)
- On the other hand, the deck girder always provides a minimum stiffness
 - \rightarrow very slender arches possible if built on centring
 - \rightarrow "secret" of the elegance of arch bridges designed by Christian Menn
 - → however, arches built on centring are uneconomical (even if still built occasionally, if economy is of little importance)

86

11.04.2023

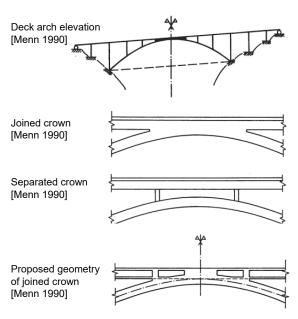

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photo: Marti, P., Monsch, O., und Schilling, B., Ingenieur-Betonbau, Gesellschaft für Ingenieurbaukunst, Band 7, vdf Hochschulverlag AG, ISBN 3-7281-2999-2, Zürich, 2005 (© Orlando Monsch)

Aesthetics

When designing a deck arch bridge, the following points – mostly proposed by Ch. Menn – should be considered; note that these are no rules, but merely points of orientation:

- The connecting line of the arch abutments (springing line) resp. the arch intersection with the ground should be parallel to the girder (top figure).
- Providing at least 4-6 spandrel columns at equal distance (5-7 equal parts) is preferable (if less spandrel columns are required, check feasibility of strut-frame bridge, see frame bridges, and if not possible, provide polygonal arch).
- If arch and deck (stiffening girder) are separated, no column should be provided at midspan.
- If arch and deck (stiffening girder) are joined monolithically, a satisfactory appearance is obtained by using the same depth for girder and arch and making sure that the arch axis is tangent to the (extended) girder soffit line (intrados), see bottom figure).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

87

Arch bridges

Design – Tied arch bridges

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

- As already outlined (general considerations), tied arch bridges are suitable for
 - \rightarrow locations with soft soil
 - \rightarrow single-span bridges with low clearance
- The in-plane stability of the arch rib is ensured by the deck girder acting in tension.
- Other than in deck arches, the arch rib is not commonly stabilised by the deck girder
- \rightarrow out-of-plane stability (transverse buckling) is a governing design parameter of tied arches
- Transverse stability can be ensured by:
 - → transverse bracings between two arch ribs running along the outside of the deck
 - \rightarrow inclined arches connected at midspan
 - → transverse U-frames consisting of (stiff) "hangers" and deck (as in classic troughsection girder bridges)
 - \rightarrow arches with high transverse stiffness (for short spans)

ETH Zürich | Chair of Con


Photo:

11.04.2023

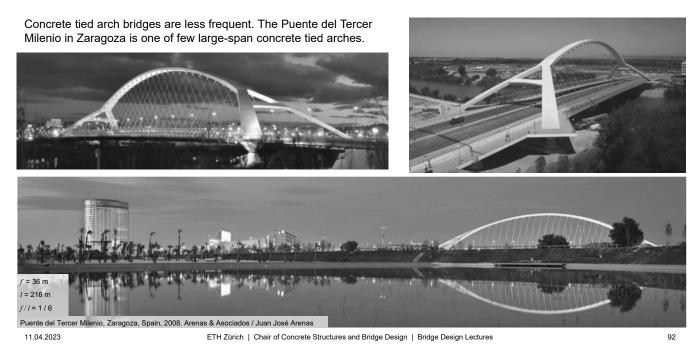
left: http://www.brooklineconnection.com/history/Facts/FtPittBridge.html;

right:

https://upload.wikimedia.org/wikipedia/commons/1/1a/Pittsburgh From The Incline Peak 2%3B 5. 30.2005%3B 549pm.jpg

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


90

Photos: © Wikimedia commons

The Barqueta Bridge was the first tied arch with one central arch rib above the roadways (raher than joining two continuous arch ribs).

Illustration adapted from Revista de Edificación (RE), N° 7, July 1990

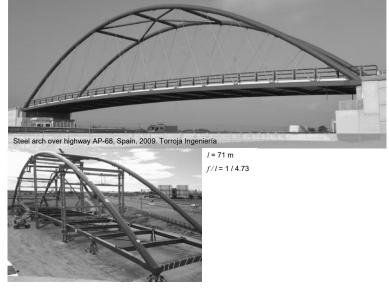
Photos: © J.J. Arenas

Photos: © Arenas & Asociados

- Arches with transverse bracings or connected arch ribs (previous two examples) require a minimum height of the to provide sufficient clearance on the bridge.
- In smaller span arches, such bracings can be eliminated if the "hangers" act as frames, stabilising the arch ribs
 - \rightarrow provide hangers with transverse stiffness
 - \rightarrow transverse frame action of deck-hanger-arch
- Such arches can be very slender, and are attractive to cross as they generate a «curtain effect» to the user (bottom photos).

Puente sobre el río Pontones, Cta. Hoznayo-Villaverde, Spain, Arenas & Asociados (2005).

11.04.2023

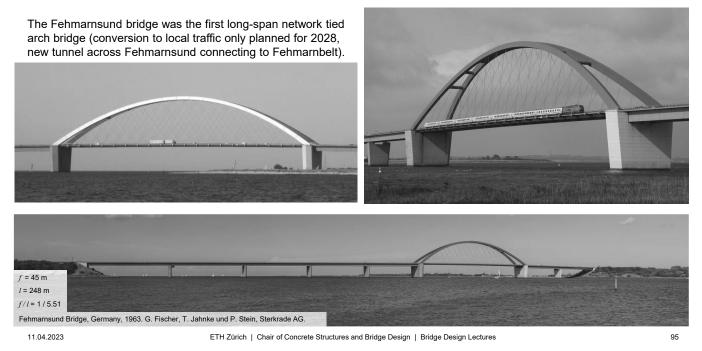

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

93

Right: Puente sobre el río Pontones, Cta. Hoznayo-Villaverde, Cantabria, Spain, Arenas & Asociados (2005). Steel tied arch with steel-concrete composite deck, span 60 m, f/L = 1/8. Photo © Arenas & Asociados.

Photos: Arenas y Asociados / W. Kaufmann

- Aesthetically, the elevated arch ribs of tied arch bridges should be slender and are thus flexible
 → stiffness (for non-anti-funicular loads) of tied arch bridges must be ensured by other elements
- Conventionally, stiff deck girders were used to ensure sufficient stiffness (previous examples)
- Alternatively, the hangers can be used to this end, with the following options
 - → Hangers inclined in elevation forming a truss together with arch rib and deck girder
 - ... hangers forming a Warren truss (Strebenzug) without intersections = Nielsen arch
 - ... hangers intersecting = Network tied arch
 - → Stiff "hangers" forming a Vierendeel girder together with arch rib and = Vierendeel arch
- Network tied arches have gained increasing popularity in the recent years due to their high structural efficiency (photo and next slides).


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

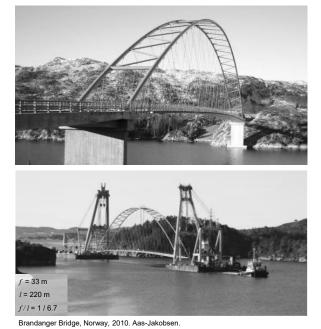
94

Note that Nielsen patented arches with intersecting hangers in 1926 as well, but never built one with this typology.

Photos: http://torrojaingenieria.es

Photos: © Wikimedia commons

- Network tied arch bridges are very efficient and can thus be used for very long spans.
- They are aesthetically attractive and very economical if an efficient erection method can be used.
- The slide shows the currently longest span network arch bridge.


96

11.04.2023

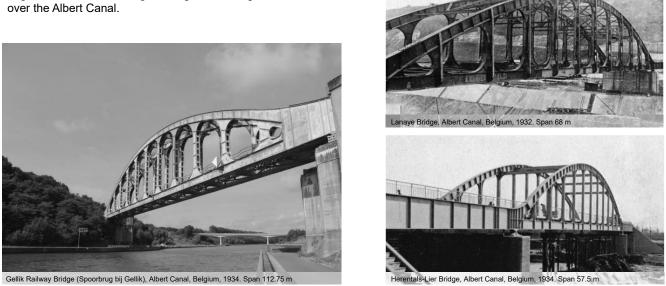
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: Top Structurae.net / Bottom © http://siberiantimes.com/

- Thanks to their efficiency, network tied arch bridges can be designed extremely slender and lightweight (photos).
- · However, they are challenging for analysis and detailing
 - → sign reversals in the hanger forces, resulting in sagging hangers, must be avoided (critical for high live load to dead load ratio and flat hangers)
 - → hangers are prestressed, analysis needs to account for hanger preload (similar as in cable-stayed bridges)
 - \rightarrow steep hangers are prone to fatigue (high load variation due to slender deck)
 - \rightarrow hanger arrangement requires complicated details (no standard connections)
- For these reasons, designers were reluctant using this efficient bridge typology for many decades.
- However, with modern analysis, drafting and fabrication methods, these challenges can be mastered.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


97

Photos: https://www.hsm-steelstructures.com/

Further reading on network arch bridges: Per Tveit, "How to Design Economical Network Arches," IOP Conf. Ser.: Mater. Sci. Eng. 471 052078, 2019.

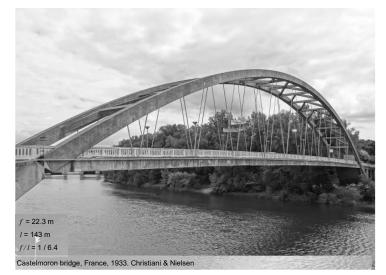
Vierendeel arches have only been used in few bridges, despite a large number of such bridges being built in Belgium in the 1930s over the Albert Canal.

11.04.2023

Photos: Bernard Espion, "The Vierendeel bridges over the Albert Canal, Belgium," Stell Construction 5(4), 2012, pp. 238-243, except Gellik Railway Bridge © Wikimedia Commons

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

98


Arch bridges

Design – Through arch bridges

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

- The logic of form is a strong positive point of deck arches which are obviously true arches.
- At least to structural engineers, the force flow is equally clear in tied arches (laymen often think they are true arches).
- In through arches, however, it is often impossible to tell whether they act as true or tied arches, even to experienced bridge designers, without closely inspecting the bridge ends or even consulting drawings.
- As an example, consider the Castelmoron Bridge:
 - → well-known bridge (as it is one of the few original Nielsen arch bridges) in the bridge community
 - → arch exhibits no kink at the hinges at deck level: indicates that any tie force in the deck girder would be continuous (equal in main span and adjoining part of the bridge)
 - \rightarrow but the adjoining part of the bridge might act as V-struts

11.04.2023

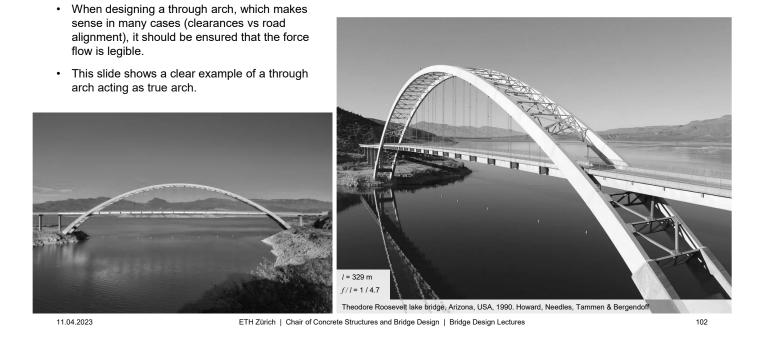
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

100

Photo:

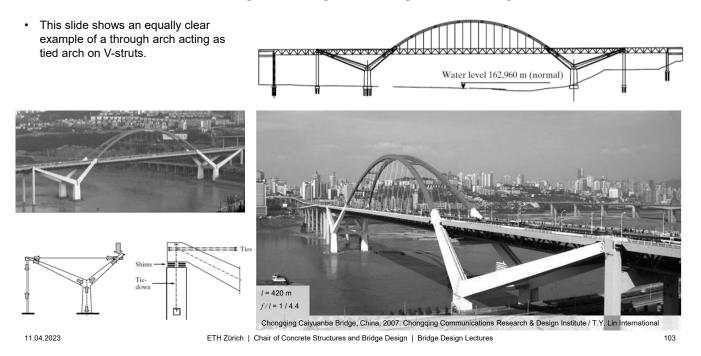
https://fr.wikipedia.org/wiki/Pont sur le Lot de Castelmoron-sur-Lot#/media/Fichier:Castelmoronsur-Lot - Pont sur le Lot -1.JPG

- Few bridge designers would thus bet much on how this bridge carries the loads without knowing more.
- Only a virtual visit to the bridge reveals that
 - → it is (most likely) acting as true arch, as there is no element that could transfer the arch thrust from the springing line back up to the girder
 - \rightarrow its soffit is also worth having a closer look



11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

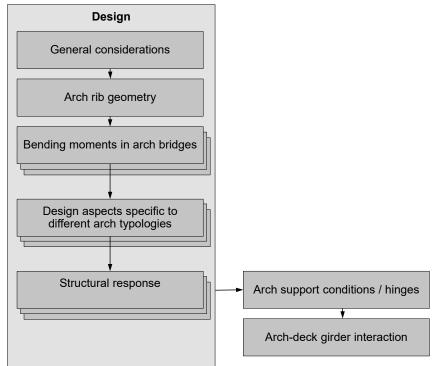

101

Photos © Google Streetview

 Photos:
 left
 :https://www.flickr.com/photos/cedwardbrice/23907070443/;
 right:

 https://www.flickr.com/photos/cmhpictures/46625020241
 right:
 right:

Photos and illustrations: Man-Chung Tang, Guolei Ren, "Design and Construction of the Main Spans of the Chongqing Caiyuanba Bridge, China," Structural Engineering International, 20:3, 2010, 296-298


Arch bridges

Structural response

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

104

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges

Structural response – Arch support conditions / hinges Case study

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

106

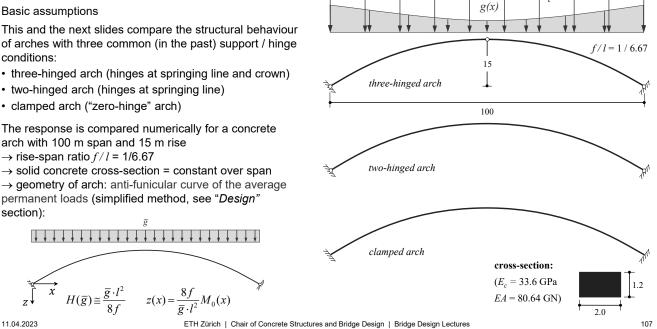
Arch bridges – Structural response: Arch support conditions / hinges

Basic assumptions

section):

11.04.2023

This and the next slides compare the structural behaviour of arches with three common (in the past) support / hinge conditions:


- three-hinged arch (hinges at springing line and crown)
- two-hinged arch (hinges at springing line)
- clamped arch ("zero-hinge" arch)

 $H(\overline{g}) \cong \frac{\overline{g} \cdot l^2}{8f}$

The response is compared numerically for a concrete arch with 100 m span and 15 m rise

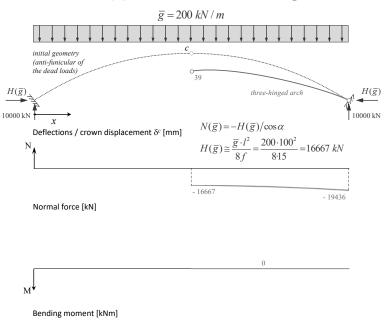
 \overline{g}

 \rightarrow rise-span ratio f/l = 1/6.67

This investigation, carried out in the Structural Response section, was inspired by the Manterola's book "Puentes II: Apuntes para su diseño, cálculo y construcción"

Arch bridges – Structural response: Arch support conditions / hinges

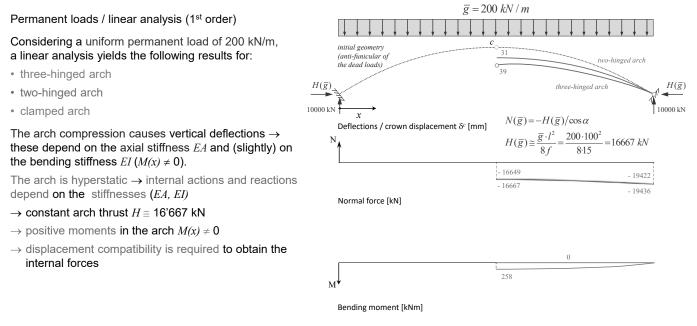
Permanent loads / linear analysis (1st order)


Considering a uniform permanent load of 200 kN/m, a linear analysis yields the following results for:

- · three-hinged arch
- · two-hinged arch
- clamped arch

The arch compression causes vertical deflections \rightarrow these depend only (three-hinged arch) on the axial stiffness *EA*.

However, as the arch is isostatic, the internal actions and the reactions are independent of the stiffnesses (*EA*, *EI*,...)


- \rightarrow constant arch thrust H = 16'667 kN
- \rightarrow bending moment along the arch M(x) = 0
- \rightarrow displacement compatibility is not needed to obtain the internal forces

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

108

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Permanent loads / linear analysis (1st order)

Considering a uniform permanent load of 200 kN/m, a linear analysis yields the following results for:

- · three-hinged arch
- · two-hinged arch
- clamped arch

The arch compression causes vertical deflections \rightarrow these depend on the axial stiffness *EA* and (slightly) on the bending stiffness *EI* (*M*(*x*) \neq 0).

The arch is hyperstatic \rightarrow internal actions and reactions depend on the stiffnesses (*EA*, *EI*)

- \rightarrow constant arch thrust $H \cong$ 16'667 kN
- \rightarrow positive and negative moments in the arch $M(x) \neq 0$
- \rightarrow displacement compatibility is required to obtain the internal forces

NB. Approximation:
$$\delta^c \cong \frac{H(\hat{g})}{EA^{A,c}} \cdot l \cdot \frac{1+3(f/l)^2}{4f/l} = 37 \text{ mm}$$

(Slide 55, $EA^A = EA^{A,c} = \text{const.}$)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

 $\overline{g} = 200 \ kN / m$ initial geometry (anti-funicular of 37 two-hinged arch the dead loads) 39 $H(\overline{g})$ $H(\overline{g})$ clamped arch three-hinged arch 10000 kN 10000 kN x $N(\overline{g}) = -H(\overline{g})/\cos\alpha$ Deflections / crown displacement δ^c [mm] $\frac{\overline{g} \cdot l^2}{2} = \frac{200 \cdot 100^2}{2} = 16667 \ kN$ Ν $H(\overline{g}) \cong$ 8·15 8 f 16649 -19354 - 19422 -16570 - 16667 - 19436 Normal force [kN] -947 258 М₩ 504 Bending moment [kNm]

Permanent loads / linear analysis (1st order)

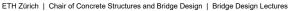
Considering a uniform permanent load of 200 kN/m, a linear analysis yields the following results for:

- three-hinged arch
- · two-hinged arch
- clamped arch

11.04.2023

The axial force N is almost identical in the three cases.

The vertical displacements of the crown δ_c , due to the arch compression, are almost identical for the three arches (see notes), as they depend mainly on the axial force *N* and the axial stiffness $EA \rightarrow \varepsilon = N/EA$ \rightarrow if $EA \rightarrow \infty$, $\delta^c = 0$ (rigid arch)


 \rightarrow if the f/l ratio decreases, N and δ_c will increase

Since the axial stiffness of the arch is much higher than the bending stiffness, the vertical displacements due to arch compression are essentially imposed to the arches. The bending moments M in the stiffer clamped arch are

thus considerably higher than those in the other cases.

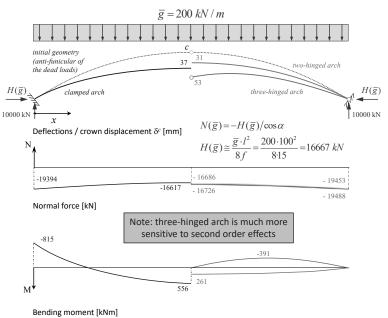
111

It may be counter-intuitive that the crown of the fixed arch deflects more than that of the two-hinged arch (adding hinges reduced deflections). This can be explained by considering that the vertical displacements depend mainly on the axial force and the axial stiffness *EA*, which are similar in the three arches (same *EA*, *N* almost identical), but that the curvature (M/EI) due to the bending moments in the fixed and two-hinged arches also causes deflections.

Consider first a three-hinged arch, subjected to a positive curvature e.g. due to differential temperature. Since the arch is convex from above, the positive curvature straightens the arch, increasing its secant length. As the arch supports cannot move, the crown of the arch will move upwards due to the positive curvature (without bending moments, the system is isostatic). A negative curvature, in turn, will shorten the arches secant length and cause the crown to descend.

The bending moments = curvatures vanish in the three-hinged arch, thus they have no influence on the vertical deflections. The vertical crown deflections produced by the positive and negative moments in the clamped arch largely cancel out, i.e. the final vertical deflection of the crown is similar to that of the three-hinged arch without bending moments. The positive bending moments in the two-hinged arch, however, reduce the vertical deflection of its crown by approximately 20%.

Permanent loads / nonlinear analysis (2nd order)


Considering a uniform permanent load of 200 kN/m, a nonlinear (2nd order) analysis yields the following results for:

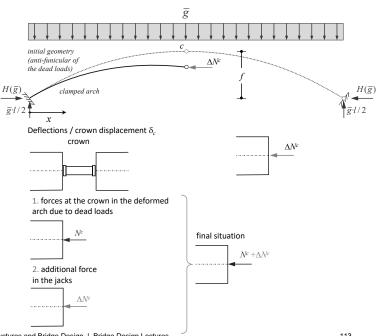
- · three-hinged arch
- two-hinged arch
- clamped arch

Geometric nonlinearity has a minor impact on the clamped and two-hinged arches \rightarrow reduced second order effects in these hyperstatic arches (for f/l = 1/6.67).

However, geometric nonlinearity strongly affects the three-hinged arch:

- \rightarrow significant negative bending moments (rather than zero)
- \rightarrow strong increase of the displacements: δ^c increased by 36%

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Opening the crown with jacks (to lift arch off falsework)

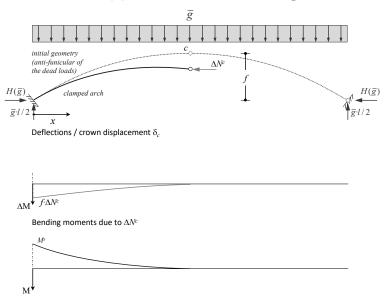
The bending moments and deflections due to arch compression can be reduced - at the time of closure, see next slide - by opening the crown with jacks (first done by E. Freyssinet, usual today in some countries).

Jacks align with the centre of gravity: no bending moments are produced in the crown until it is closed \rightarrow the two-hinged and clamped arches are composed for two system:

- \rightarrow hinged arch at the crown (dead loads + part of the creep)
- \rightarrow closed arch at the crown (all other loads)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


Opening the crown with jacks (to lift arch off falsework)

The bending moments and deflections due to arch compression can be reduced – at the time of closure, see next slide – by opening the crown with jacks (first done by E. Freyssinet, usual today in some countries).

The additional normal force ΔN^c is introduced at the crown (by means of a centric normal force ΔN^c , applied by jacks) to reduce the total eccentricity e = M / N.

The optimum values of the jacking forces can be determined by imposing the condition that the total bending moments at the abutments (springing line) vanish:

$$\sum M^s = 0 = -M^s + f \cdot \Delta N^c \to \Delta N^c = -\frac{M^s}{f}$$

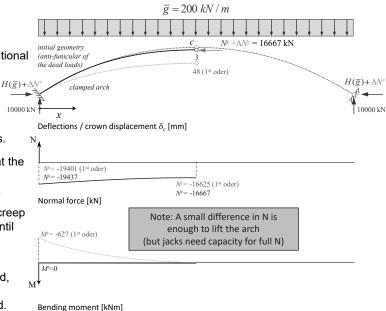
Bending moment due to dead and imposed deformations

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Opening the crown with jacks (to lift arch off falsework)

Using the parameters of the numerical example on the previous slides (including a hinge at the crown), the additional normal force ΔN^c at the crown in the clamped arch is:


$$\Delta N^c = -\frac{M^s}{f} = \frac{627}{15} = 41.8 \text{ kN}$$

Physically, the jacks have to apply the total normal force $N^c + \Delta N^c = 16625 + 42 = 16667$ kN, acting in the arch rib axis.

Thereby, the total bending moment obviously vanishes at the springing lines (higher normal force in the arch chosen accordingly) \rightarrow bending moments have been eliminated.

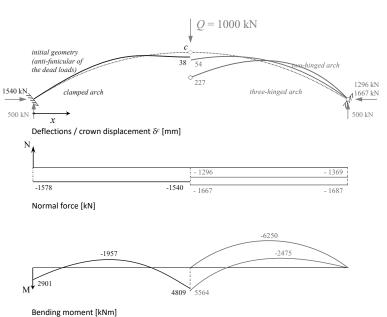
However, the beneficial effect will largely be lost due to creep unless the jacks are kept installed and are re-adjusted until creep has decayed (as e.g. done for 5 years in the Krk bridges, see *Design* section).

The clamped arch hinged at the crown, before it is closed, has certain sensitivity to 2^{nd} effects (similar to the three-hinged arch) $\rightarrow 2^{nd}$ order effects should to be considered.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Point load at crown / linear analysis (1st order)


Considering a point load of 1000 kN at the crown, a linear analysis yields the following results:

- three-hinged arch
- · two-hinged arch
- · clamped arch

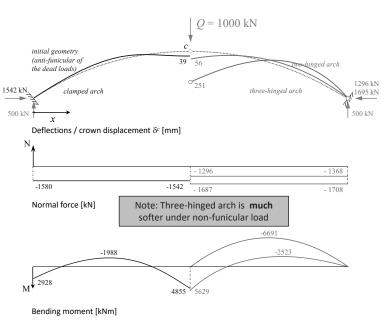
The differences between the axial forces in the three cases are moderate.

The bending moments and the deflections of the threehinged arch are markedly higher than in the other two cases: The vertical displacement at the crown δ^c is ca. 4...6 times greater.

The bending moments and deflections of two-hinged and clamped arches are very similar, except at the springing lines (obviously).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


Point load at crown / nonlinear analysis (2nd order)

Considering a point load of 1000 kN at the crown, a nonlinear (2nd order) analysis yields the following results:

- · three-hinged arch
- two-hinged arch
- clamped arch

Geometrical nonlinearity has a relevant effect (in this example) only in the three-hinged arch:

- \rightarrow the maximum bending moment is increased by 7%
- \rightarrow the vertical displacement at the crown is increased by 10%

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

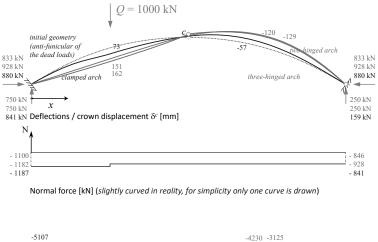
Point load at quarter points / linear analysis (1st order)

Considering a point load of 1000 kN at the quarter point, a linear analysis yields the following results:

- · three-hinged arch
- · two-hinged arch
- · clamped arch

The axial forces are similar for the three cases.

The two-hinged and three-hinged arches have a similar response (internal forces and deflections).


The clamped arch is clearly superior under asymmetric loads. For this example:

- \rightarrow the maximum bending moment is approximately 30% smaller than in the other two cases.
- \rightarrow the maximum vertical displacement is approximately 50% smaller than in the other two cases.

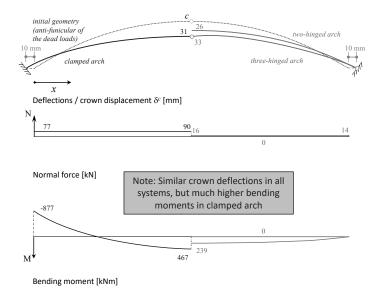
Note: the 2nd order effects have no significant influence in this example for this load case.

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Horizontal support displacements

To analyse the influence of imposed deformations, horizontal displacements of 10 mm are imposed to the supports. The following results are obtained:

- three-hinged arch
- two-hinged arch
- clamped arch


11.04.2023

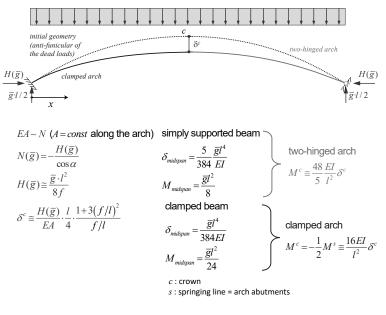
The bending moments increase with the degree of statical indeterminacy:

- → the internal actions in the three-hinged arch are zero (isostatic system)
- → the bending moments are much higher for the clamped arch than the two-hinged arch

NB1: The same conclusion applies for other imposed deformations (temperature, creep,...).

NB2: Approximation: $\delta^c \simeq \frac{H(\bar{g})}{EA^{A,c}} \cdot l \cdot \frac{1+3(f/l)^2}{4f/l} = 37 \text{ mm}$ (Slide 55, horizontal displacement)

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


Effect of rise-to-span ratio f/l on bending moments

Here, a uniform permanent load g and a linear analysis is used. The arches considered are:

- two-hinged arch
- clamped arch

As outlined in the *Design* section and in the permanent loads analysis, the arch compression causes vertical deflections δ^c . These deflections produce bending moments M(x), and the maximum and minimum bending moments can be expressed in terms of the vertical deflection.

As the normal force N depends on the rise-to-span ratio f/l, the latter has a strong influence on the vertical deflections and the bending moments.

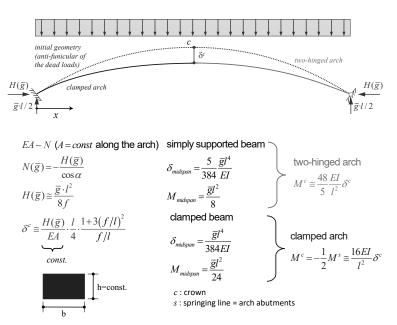
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

120

Note: The three-hinged arch is not included here, since a linear analysis would yield zero bending moments, i.e., nonlinear analysis would be required. On the other hand, 2nd order analysis has no significant influence on the two-hinged and clamped arches (see previous slides).

Effect of rise-to-span ratio f/l on bending moments


Here, a uniform permanent load g and a linear analysis is used. The arches considered are:

- · two-hinged arch
- clamped arch

To isolate the effect of the rise-to-span ratio f/l, the following assumptions are made:

- → H/(EA) = const. \forall f/l, i.e., similar axial deformation $\varepsilon = N/(EA)$ due to arch compression for all f/l ratios
- \rightarrow radius of gyration $i^2 = I/A = \text{const}$, i.e.
 - → constant arch height *h* , arch width *b*(*f*/*l*) determined such that $H/(E \cdot h \cdot b)$ = const. \forall *f*/*l*
- \rightarrow variable self-weight as function of the arch width b

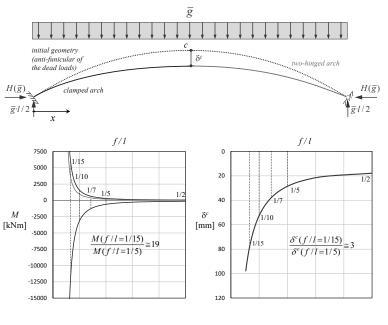
 $\overline{g} = \gamma_c \cdot h \cdot b + DL$ (DL: permanent loads)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Effect of rise-to-span ratio f/l on bending moments

Here, a uniform permanent load g and a linear analysis is used. The arches considered are:


- · two-hinged arch
- clamped arch

Using these assumptions and equations in the numerical example (l=100 m; h=1.20 m; DL = 140 kN/m), the following results are obtained (see graphs):

- The rise-span ratio *f* / *l* is highly relevant, having a strong impact on structural behaviour, particularly for small values of *f* / *l* (low arches)
- Bending moments increase exponentially with smaller values of f/l, particularly pronounced for f/l < 1/10. For f/l = 1/15, bending moments are up to 15 times higher than for f/l = 1/5.
- The crown displacement also grows progressively as f/l decreases, especially for f/l < 1/10
- Clamped and two-hinged arches show similar tendencies.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

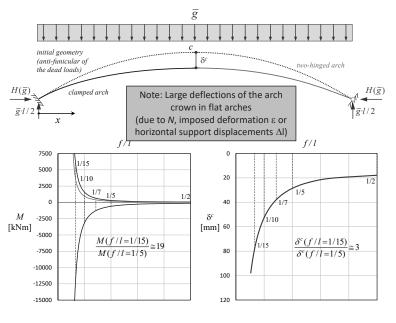
Effect of rise-to-span ratio f/l on bending moments

Here, a uniform permanent load g and a linear analysis is used. The arches considered are:

- two-hinged arch
- · clamped arch

Note that similar results are obtained when the arches are subjected to horizontal displacements of the supports.

The resulting bending moments, for a low arch (risespan ratio lower than 1/10), may exceed the moments produced by the gravity loads.


Conversely, the influence of imposed deformations are relatively small in arches which rise-span ratios > 1/7.

The numerical results correspond closely to the approximation (slide 55) for *EA*=const., i.e.

$$\delta^{c} \cong \frac{H(\tilde{g})}{EA^{A,c}} \cdot l \cdot \frac{1+3(f/l)^{2}}{4f/l}$$
 is a good approximation.

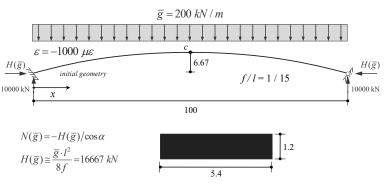
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Permanent load + imposed deformation 1st and 2nd order analysis

- three-hinged arch
- · two-hinged arch
- · clamped arch

Imposed deformations never act alone. Rather, other actions are present, e.g. permanent loads or traffic loads. Consequently, the deformations caused by imposed deformations (change of geometry) produce an increase of the internal actions (bending moments).

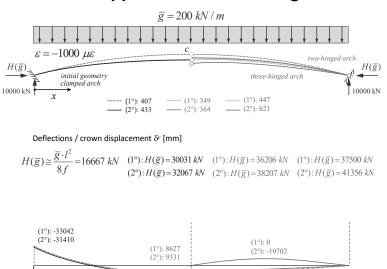

For this study, aa low arch (f/l = 1/15) is chosen in order to accentuate the nonlinearity effects.

Arch geometry and loads :

- $\rightarrow l = 100 \text{ m}; f = 6.67 \text{ m}; f/l = 1/15$
- \rightarrow cross-section: $h \ge b = 1.2 \le 5.4 \le b$
- \rightarrow uniform permanent load: g = 200 kN/m
- \rightarrow imposed deformation: $\varepsilon = -1000 \ \mu\epsilon$ (temp. + creep)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


Permanent load + imposed deformation 1st and 2nd order analysis

- · three-hinged arch
- · two-hinged arch
- clamped arch

The figures compare the deflections and bending moments of the arches.

The three-hinged arch is the most flexible of all arches. The crown deflection (2nd order) is roughly 1.4 and 1.7 times larger than in the clamped and two-hinged arches, respectively. It is more sensitive to geometrical nonlinearity and, therefore, has a greater risk of instability.

The bending moments in the clamped arch are higher than the other arches and, similar to the two-hinged arch, there is no significant difference between 1^{st} order and 2^{nd} order results.

(1°): 16750 (2°): 18809

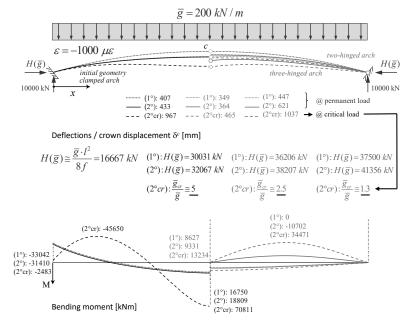
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Bending moment [kNm]

Μ

Permanent load + imposed deformation 1^{st} and 2^{nd} order analysis


- · three-hinged arch
- · two-hinged arch
- clamped arch

Instability and critical load g_{cr} :

Instability is reached quickly in the three-hinged arch. The critical load g_{cr} is only 1.3 times higher than the permanent load g.

The clamped arch is the most stable \rightarrow instability is reached at a critical load g_{cr} 5 times higher than the permanent load g.

The two-hinged arch is in an intermediate position \rightarrow instability is reached at a critical load g_{cr} 2.5 times greater than the permanent load g.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Permanent load + imposed deformation 1st and 2nd order analysis

- · reinforced concrete
- three-hinged arches \rightarrow two-hinged arches
- central span: 72.5 m
- f/l = 1/15

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

127

Le Veurdre bridge (1910), designed and built by Eugène Freyssinet, consists of 3 three-hinged arches with a central span of 72.5 m, and an extraordinary slenderness of f/=1/15.

Due to the high slenderness of the arch, the deflection at the crown already amounted to 13 cm (I/550) in the year of its inauguration and kept increasing continuously. This observation was essential to the discovery of creep in concrete (or the recognition of its existence, which had been denied by academics "believing" in elasticity initially). Freyssinet solved the problem in the Veurdre bridge by opening the arches in the crown by means of jacks and subsequently eliminating the hinges at the crown by grouting them. He had used jacks in the crown as early as 1907 for de-centring a small arch bridge (span 26 m) at Prairéal-sur-Bresbre, not far from the Veurdre bridge.

If this bridge had been built with two-hinged arches instead of three hinges per arch, the creep deformations would have been more difficult to discover. When Maillart designed and built three-hinged arch bridges, he extended the arch-deck connection until approximately to a quarter of the span to get more stiffness in the zones where the bending moments due to vertical displacements are significant.

The Veurdre bridge was unfortunately destroyed in World War II.

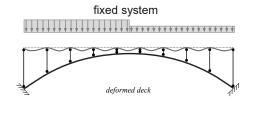
Photo: left: <u>https://www.ce.jhu.edu/perspectives/protected/ids/Buildings/Le%20Veurdre%20Bridge/;</u> right: A. Hilaire, Étude des déformations différées des bétons en compression et en traction, du jeune au long terme : application aux enceintes de confinement, 2014.

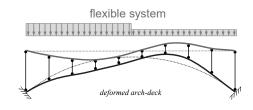
Arch bridges

Structural response – Arch-deck girder interaction Case study

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


If an anti-funicular arch geometry is chosen, usually for permanent loads, arch bridges carry the corresponding loads efficiently.


However, non-anti-funicular loads need to be accounted for in design. Under such loads, the arch – arch rib, deck girder and spandrel columns or hangers – act as a frame system, whose behaviour depends on

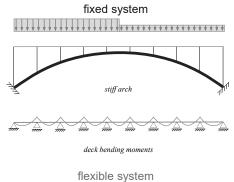
- \rightarrow the stiffness ratio of arch rib and deck girder
- → the type of connection between arch rib and deck girder (clamped or pin-jointed spandrel columns resp. "hangers" – see notes)

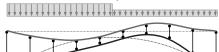
To better understand the behaviour, the bending moments in the frame system can be subdivided into two components:

- fixed system
- · flexible system

11.04.2023

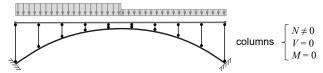
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


129


Note that in the case of steel hangers, their axial stiffness becomes relevant, in that the vertical deflection of the deck and arch are not exactly equal. While in the case of concrete spandrel columns this is not an issue. The effects of creep need to be considered in the latter case of course.

The following points have essentially been outlined in the Design section. Here, they are repeated and a case-study is presented to highlight some specific aspects.

- fixed system
 - \rightarrow assume a perfectly rigid arch
 - \rightarrow bending moments in deck girder corresponding to those in a continuous beam (replacing spandrel columns by supports).
- flexible system
 - \rightarrow bending moments in the flexible system involve arch deflections due to non-anti-funicular loads
 - \rightarrow generally, these bending moments are shared by arch rib and deck girder in proportion to their bending stiffnesses
 - \rightarrow two ideal limiting cases can be considered:
 - \rightarrow deck-stiffened arches ("versteifter Stabbogen"), where the entire flexible system moments are resisted by the deck girder ("Versteifungsträger")
 - \rightarrow stiff arches resisting the entire flexible system moments alone

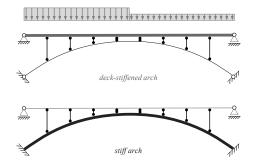


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

In this study, a clamped deck-arch bridge, with expansion joints of the deck above the arch abutments (intersection of springing line with arch axis) is considered (unlike Slide 63: deck continuous).

In the first part, pin-jointed spandrel columns are assumed.

Two limiting cases:

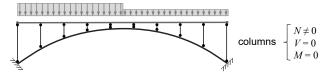

deck-stiffened arch

 \rightarrow flexural deck girder stiffness EI^D >> flexural arch rib stiffness EI^A

stiff arch

 \rightarrow flexural arch rib stiffness *EI*^A >> flexural deck girder stiffness *EI*^D

In these limiting cases, either the stiffening girder or the stiff arch resists (almost) the entire bending moments.

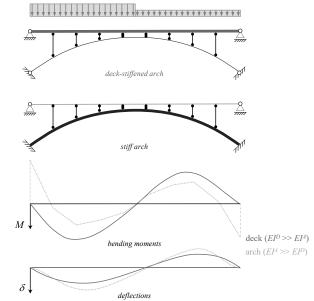


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

In this study, a clamped deck-arch bridge, with expansion joints of the deck above the arch abutments (intersection of springing line with arch axis) is considered (unlike Slide 63: deck continuous).

In the first part, pin-jointed spandrel columns are assumed.

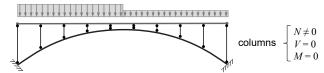

Two limiting cases:

deck-stiffened arch

→ flexural deck girder stiffness *EI*^D >> flexural arch rib stiffness *EI*^A • stiff arch

 \rightarrow flexural arch rib stiffness *EI*^A >> flexural deck girder stiffness *EI*^D

In these limiting cases, either the stiffening girder or the stiff arch resists (almost) the entire bending moments.

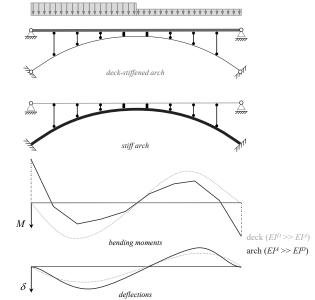


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

In this study, a clamped deck-arch bridge, with expansion joints of the deck above the arch abutments (intersection of springing line with arch axis) is considered (unlike Slide 63: deck continuous).

In the first part, pin-jointed spandrel columns are assumed.

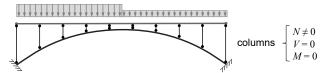

Two limiting cases:

deck-stiffened arch

 \rightarrow flexural deck girder stiffness $EI^D >>$ flexural arch rib stiffness EI^A • stiff arch

 \rightarrow flexural arch rib stiffness *EI*⁴ >> flexural deck girder stiffness *EI*^D

In these limiting cases, either the stiffening girder or the stiff arch resists (almost) the entire bending moments.



11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

In this study, a clamped deck-arch bridge, with expansion joints of the deck above the arch abutments (intersection of springing line with arch axis) is considered (unlike Slide 63: deck continuous).

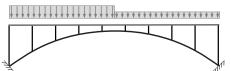
In the first part, pin-jointed spandrel columns are assumed.

Two limiting cases:

· deck-stiffened arch

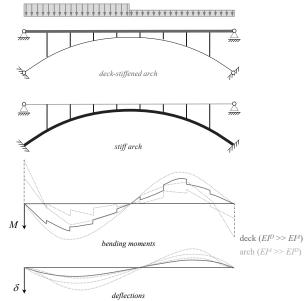
 \rightarrow flexural deck girder stiffness *EI*^D >> flexural arch rib stiffness *EI*^A stiff arch

 \rightarrow flexural arch rib stiffness *EI*^A >> flexural deck girder stiffness *EI*^D


In these limiting cases, either the stiffening girder or the stiff arch resists (almost) the entire bending moments.

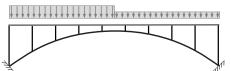
The differences of bending moments and deflections between arch rib and deck girder are due to the different support conditions assumed here (clamped vs. simply supported). In the design section (Slide 63), both are assumed to be continuous. 11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

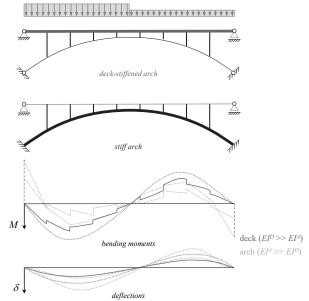

deck-stiffened arch stiff arch Mdeck $(EI^D >> EI^A)$ bending moments arch $(EI^A >> EI^D)$ б deflections 134

If the spandrel columns are clamped, rather than pin-jointed, arch rib and deck are not only coupled in terms of vertical deformations, but act as frame system.

Two limiting cases:

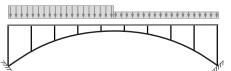

- deck-stiffened arch
- → flexural deck girder stiffness *EI*^D >> flexural arch rib stiffness *EI*^A • stiff arch
 - \rightarrow flexural arch rib stiffness *EI*^A >> flexural deck girder stiffness *EI*^D

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

If the spandrel columns are clamped, rather than pin-jointed, arch rib and deck are not only coupled in terms of vertical deformations, but act as frame system.

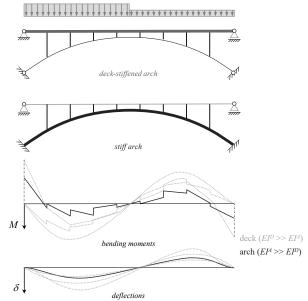
Two limiting cases:


- deck-stiffened arch
- → flexural deck girder stiffness *EI*^D >> flexural arch rib stiffness *EI*^A • stiff arch
 - \rightarrow flexural arch rib stiffness *EI*^A >> flexural deck girder stiffness *EI*^D

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

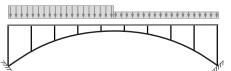
If the spandrel columns are clamped, rather than pin-jointed, arch rib and deck are not only coupled in terms of vertical deformations, but act as frame system.



Two limiting cases:

deck-stiffened arch

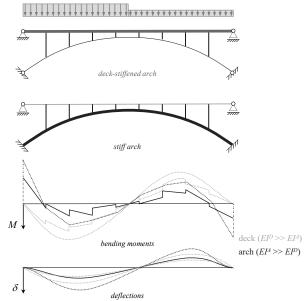
 \rightarrow flexural deck girder stiffness $EI^D >>$ flexural arch rib stiffness EI^A • stiff arch


 \rightarrow flexural arch rib stiffness *EI*^A >> flexural deck girder stiffness *EI*^D

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

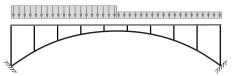
If the spandrel columns are clamped, rather than pin-jointed, arch rib and deck are not only coupled in terms of vertical deformations, but act as frame system.



Two limiting cases:

deck-stiffened arch

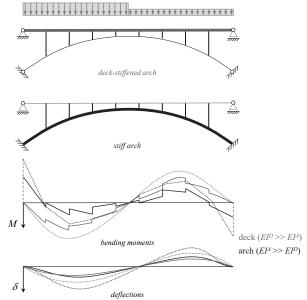
 \rightarrow flexural deck girder stiffness $EI^D >>$ flexural arch rib stiffness EI^A • stiff arch


 \rightarrow flexural arch rib stiffness *EI*^A >> flexural deck girder stiffness *EI*^D

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

If the spandrel columns are clamped, rather than pin-jointed, arch rib and deck are not only coupled in terms of vertical deformations, but act as frame system.



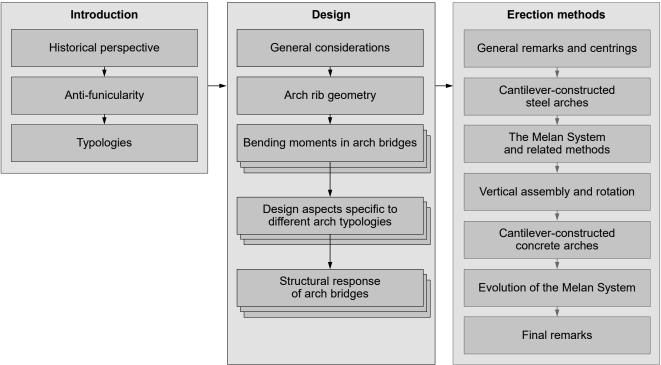
Clamped spandrel columns, together with deck girder and arch rib, act as Vierendeel girder

- ightarrow significantly stiffer than sum of deck girder and arch stiffness
- \rightarrow deflections significantly reduced

The short clamped spandrel columns close to the crown have a high flexural stiffness and transfer the axial normal force from the arch rib to the deck.

In some cases, shear forces and bending moments in such spandrel columns may be excessive \rightarrow (concrete) hinges may be provided to reduce these actions (e.g. Tamina bridge)

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges

Erection methods

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges

Erection methods – General remarks and centrings

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Arch bridges – Erection methods: General remarks and centrings

High relevance of erection method in arch bridges

- The construction process is an essential part of the conceptual design of any bridge
- While arches are very efficient structures in the final configuration
 - → the efficient arch action is only activated once the arch is able to transfer the arch thrust, i.e., after closure (Bogenschluss)
 - → the load transfer during construction differs strongly from that in the final configuration, undermining economy (see Conceptual Design)
 - → the construction process is particularly relevant for the economy of arch bridges

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

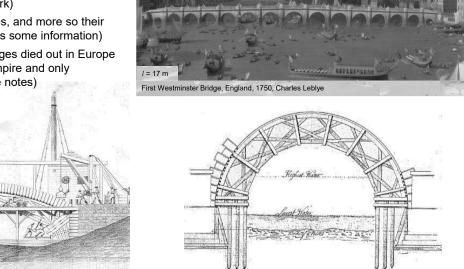

143

Photo: Falsework / centring of the Gmündertobelbrücke, Stein-Teufen AR, Switzerland, Emil Mörsch (1908). clamped arch, span 79 m, f/L = 1/3. One of the first major reinforced concrete arch bridges without hinges. Photos © www.e-pics.ethz.ch

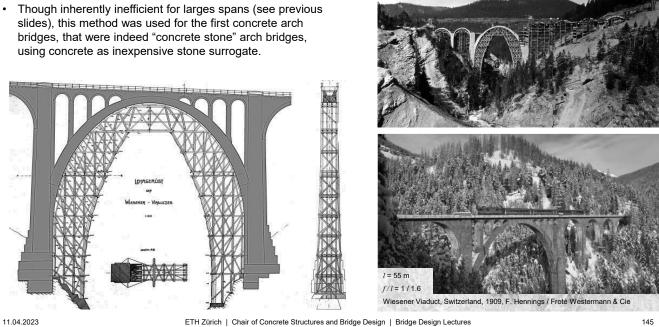
Arch bridges – Erection methods: General remarks and centrings

Stone arches

- For centuries, stone arches have been erected on timber centrings (= arch or dome falsework)
- Information on Roman arch bridges, and more so their centrings, is scarce (Vitruvius gives some information)
- The practice of building stone bridges died out in Europe with the collapse of the Roman empire and only reappeared in the middle age (see notes)

144

11.04.2023

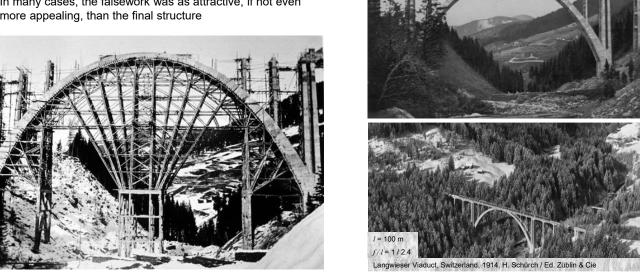

Hutchesontown Bridge, Scotland, 1856

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustrations on right side: First Westminster Bridge, Swiss Engineer Charles Lebelye, 15 spans of ca. 17 m (1750, replaced 1862). Painting by Canaletto (with the Lord Mayor's Procession on the Thames), 1747. Drawing of James King's centring for an arch of Westminster Bridge (1739). Left side: Decentering of Hutchesontown Bridge in Glasgow (1856).

Painting © Yale Center for British Art. Illustrations Taken from Peter Cross-Ruskin, "Centres for Large Span Masonry Arch Bridges in Britain to 1833", 2nd International Congress on Construction History, Queens' College, Cambridge University, 2006.

Quotation from Cross-Rudkin: Arch bridges have been built in Britain possibly from Roman times, when some significant structures along Hadrian's Wall are suggested (Bidwell & Holbrook 1989). Engineering drawings of these early structures do not survive, though the ten volumes on architecture by Marcus Vitruvius (translated into French by Fleury and English by Morgan) contain descriptions of bridgeworks. By definition, the temporary works have been removed, so apart from the information given in Vitruvius it is only possible to suggest construction techniques by detailed study of the remaining bridges themselves. [...] It is not clear why the practice of building stone bridges died out in Europe with the collapse of the Roman Empire, or why they should have reappeared in several countries at more or less the same time. [...] In Britain this renaissance dates from at least the late 11th century (Harrison 2004, p. 110). Almost all of the 'vernacular' bridges of the midlands and south of England over the next 600 years are of moderate span, the first one having a span in excess of 50 feet being built at Lewes in 1727. However in the north of England structures of this span appear from the 1350s and in Scotland a century later. By the middle of the 16th century a few spans had reached 100 feet, as much as any remaining Roman bridge. From then to 1738 only the Great Bridge at Blenheim and the Causey Arch in County Durham were of similar span. In the next 110 years only 22 bridges with spans greater than 100 feet were built, but the largest, Grosvenor Bridge at Chester (built in 1827-33), spanned 200 feet and was for thirty years the largest in the world.


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: Wiesener Viadukt, Rhätische Bahn, F. Hennings / Froté Westermann & Cie (1909). Concrete stone deck arch railway bridge. Length 210 m, arch span 55 m, height 62 m. Centring by Richard Coray.

Photo of bridge © www.bahnbilder.ch, David Gubler / Photo and illustration of falsework © www.epics.ethz.ch.

- Centrings, often using timber, were also used for the first reinforced concrete arch bridges.
- In many cases, the falsework was as attractive, if not even more appealing, than the final structure

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

146

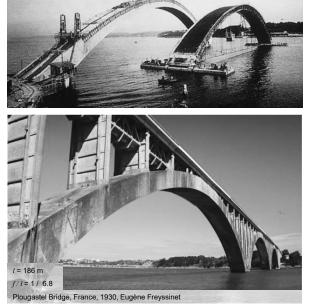
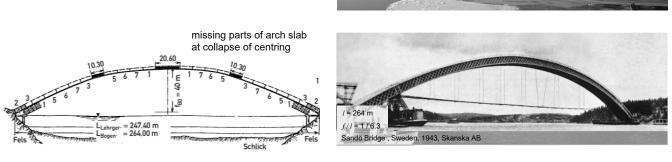

Photos: Langwieser Viadukt, Rhätische Bahn, H. Schürch / Ed. Züblin & Cie. (1914). First major reinforced concrete railway bridge. Length 284 m, deck arch, span 100 m, height 62 m. Centring by Richard Coray.

Photo of falsework © Marti, Monsch und Laffranchi: Schweizer Eisenbahnbrücken, 2001. Postcard from 1925 © Photoglob, Zürich.

Photo © https://www.wikiwand.com/de/Langwieser_Viadukt (website providing ample information about the bridge)

- Timber centrings can also be used for arch bridges crossing water. They can be assembled on shore (where the centring can easily be supported) and then floated in as tied arch.
- The most prominent example is Freyssinet's Pont de Plougastel (Pont Albert-Louppe) crossing the bay of Brest, see photos.
- "Wind deviation" devices (see photo below) were mounted on Freyssinet's iconic bridge after the construction of a modern cable-stayed bridge nearby, to protect the latter from turbulence – a disgrace.

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

147

Photos: Pont de Plougastel (Pont Albert-Louppe), Bretagne, Eugène Freyssinet (1930). Three arches with 186 m span each, total length 888 m. Falsework floated in, used three times for the three deck arches that were cast sequentially.

Photos: Floating in of the falsework for the Pont Albert-Louppe, Plougastel, Bretagne, 1929 copied from W. Lorenz "Brücken und Brückenbauer – Haltungen zum Konstruieren, Jahrbuch 1998 der Braunschweigischen Wissenschaftlichen Gesellschaft, p. 105-132. Finished bridge © Wikipedis

- Large-span timber falsework arches need to be designed and detailed as meticulously as final structures.
- While there were no problems in the Plougastel bridge, the similar falsework of the Sandö Bridge – though with a substantially longer span (record concrete arch span at the time) – collapsed on the 31.8.1939. Eighteen construction workers died.
- The bridge was then finally built on a falsework with intermediate shoring.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

148

Photos: Sandö Bridge across Ångermanälven river, Lunde-Sandö, Sweden (1943). Deck arch. span 264 m (record concrete arch span at the time), f/L = 1/6.3, total length 810 m. Falsework collapsed in 1939 (potential failure cause: lateral buckling of nailed timber flanges).

Photos and illustrations: Falsework illustration and photo of first falswork adapted from M. Herzog, "Der Einsturz des hölzernen Lehrgerüstbogens der Sandöbrücke im Rückblick," Bautechnik 75, Heft 7, 1998, pp. 450. Second falsework © Björn Åesson, Understanding Bridge Collapses. Finished bridge © keibr, Wikimedia Commons.

- The Gladesville Bridge in Sydney (main span 305) succeeded The Sandö Bride in 1964 as longest span concrete arch bridge.
- While looking similar, the Gladesville Bridge is more slender and featured several innovative construction methods, with a high degree of prefabrication, resulting in a highly efficient construction process (see notes).
- The bridge was designed mainly by T. Gee, a young British engineer (born 1934), and was the last major project in which E. Freyssinet was personally involved.

29.11.2022

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Gladesville Bridge across Parramatta river, Sydney, Australia (1964). Deck arch, span 305 m (record concrete arch span at the time), f/L = 1/7.4, total length 579 m. Design by Tony Gee, Maunsell & Partners, with consulting by Eugène Freyssinet.

Highly efficient construction process using precast segmental box elements (floated in, lifted to the arch crown and lowered into position on rails along the arch falsework, which was supported on piles). The same falsework was used for the four parallel arch ribs. Each arch rib was lifted off the formwork after completion by means of inflatable gaskets (hydraulic flat jacks subsequently injected with cementitious grout), such that the falsework could be launched transversely and used for erecting the next arch rib. The four arch ribs were finally connected by transverse prestressing. Prefabricated elements were also used for the piers, the spandrel columns and the deck (multi-girder open cross-section).

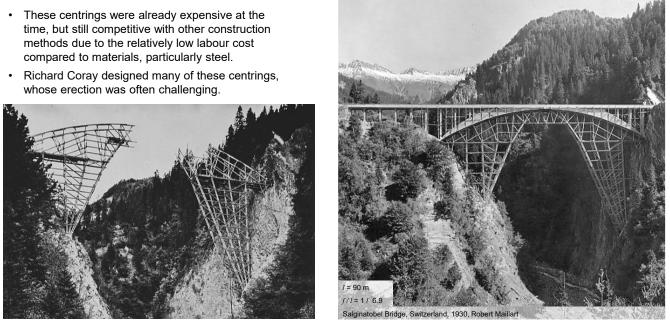
Photos: Construction stages © Transport for NSW see link below. Finished bridge: kfm, 2022.

Further reading and historic video of bridge construction:

https://roads-waterways.transport.nsw.gov.au/about/environment/protecting-heritage/gladesville-bridge-50th-anniversary.html#Photogallery

- Most of the prominent early concrete arch bridges were built using remarkable timber centrings.
- This and the following slides show three further extraordinary Swiss examples (Hundwilertobel Bridge,

11.04.2023



Photos: Hundwilertobelbrücke, A. Schläpfer, Ed. Züblin & Cie 1925, replaced 1992). Reinforced concrete deck arch bridge, arch span 105 m (3rd longest concrete arch span workdwide at time of erection), f/L = 1/2.9, 74 m above ground.

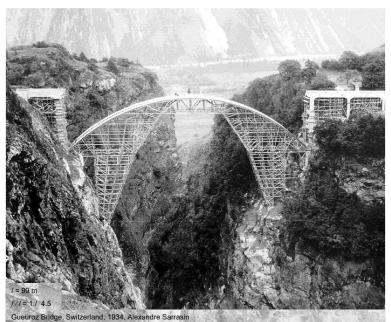
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

150

Photo of centring, left side © www.e-pics.ethz.ch. Photos of arch and bridge taken from M. Ros, Versuche und Erfahrungen an ausgeführten Eisenbeton-Bauwerken in der Schweiz, EMPA Bericht No. 99, Beilage zum XXVI. Jahresbericht des Vereins schweizerischer Zement-, Kalk- und Gips-Fabrikanten, 1937.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


151

Photos: Salginatobelbrücke, Robert Maillart (1930). Reinforced concrete deck arch bridge, span 133 m. Centring by Richard Coray.

Photos https://www.atlasofplaces.com/architecture/salginatobelbruecke/

- Centrings remained the preferred construction method of many designers for reinforced concrete arches until the 1940s, although alternative erection methods existed already (Melan system, see behind).
 - → Consequently, only few reinforced concrete arches with spans above 80, and only a handful above 100 m were built (see notes).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

152

Photos: Pont de Gueuroz, Vernayaz, Alexandre Sarrasin (1934). Reinforced concrete deck arch bridge, span 99 m. Centring by Richard Coray.

Photos © P. Marti, O. Monsch, B. Schillling: Ingenieur-Betonbau

According to Heinrich Spangenberg (H. Spangenberg, «Weitgespannte Wölbbrücken», Report of the 2nd International Congress for Bridge- and Structural Engineering, 1929, International de Construction des Ponts et Charpentes, only 35 reinforced concrete arches with spans above 80 m, and as few as seven with spans above 100 m existed worldwide in 1929, in chronological order:

	Bridge	Span	f/L
-	Tiber Bridge, Rome (1911)	100.0 m	1 / 10 (!)
-	Langwieser Viadukt, Chur-Arosa (1914)	100.0 m	1 / 2.38
-	Cappelen Bridge, Minneapolis (1923)	121.9 m	1/4.45
-	Seine Bridge, St. Pierre-du-Vauvray (1923)	131.8 m	1 / 5.27
-	Hundwilertobel Bridge, Appenzell (1925)	105.0 m	1 / 2.92
-	Tweed Bridge, Berwick UK (1928)	110.0 m	1 / 7.92
-	Caille Bridge, Cruseilles (1928)	139.8 m	1 / 5.2

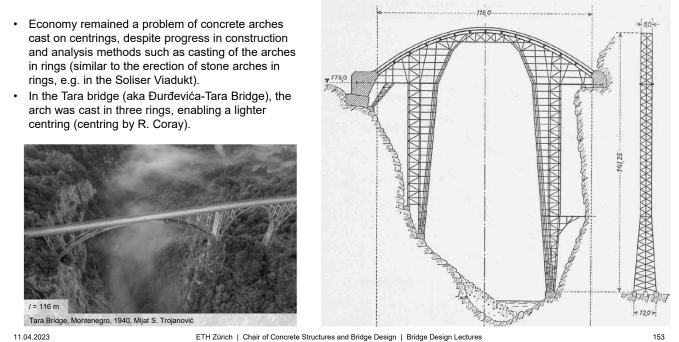


Illustration and photo: Tara Bridge (aka Đurđevića-Tara Bridge), Žabljak, Yugoslavia (now Montenegro), Mijat S. Trojanović (1940). Concrete arch, main span 116 m, 140 m above ground. Falsework by R. Coray.

Drawing: © R. Coray, "Vom Bau der Strassenbrücke über die Tara in Jugoslavien," *Schweizerische Bauzeitung,* Band 117/118, 1941, pp. 260-261

Photo © M. Durcatova, Shutterstock

Arch bridges

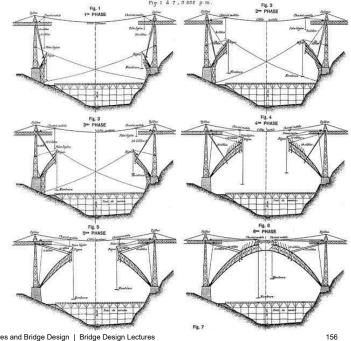
Erection methods – Cantilever-constructed steel arches

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

154

- On the other hand, for almost 150 years, steel truss arch • bridges have been built by cantilevering, either with or without temporary supports or stays.
- Typically, they were designed as two- or three-hinged arches to minimise restraint
- The first, prominent example is the Eads Bridge across the Mississippi, built by cantilevering (with temporary towers and stays) as early as 1874, with three spans above 150 m.


11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustration and photo: Eads Bridge across Mississippi, St. Louis - East St. Louis, James Eads (1874). First cantilever constructed iron/steel truss deck arch bridge (with temporary towers and stays), main spans 153.1+158.6+153.1 m (502+520+502 ft, record arch span at the time), width 14 m. Subway train First pneumatic caisson foundation in the U.S.

Illustration: © Linda Hall Library od Science, Engineering and Technology, reproduced in J. Talbot: The Eads Bridge A Revolution in Engineering. Modern Steel Construction, AISC, March 2011. Photo: © kbh3rd, Wikimedia Commons

- In truss arches built by cantilevering without backstays, the arch abutment is clamped during construction, and only free to rotate after closure of the arch. Hence, the upper truss chords
 - · are fully utilised in construction (tension chords)
 - receive little load in the final configuration (they primarily help stabilizing the arch from buckling)
- This is most obvious at the bridge ends, where forces during cantilevering are highest, but once the arch is closed, the top chords are virtually (completely in twoor three-hinged arches) stress free
 - → such arches are inherently uneconomical and, in this respect, lack logic of form.
- Using temporary towers and stays during cantilevering as in the Garabit Viaduct, the arch can be hinged at its abutments from the beginning, yielding a much more consistent design in the final configuration.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Illustration: Erection of the Garabit Viaduct, Gustave Eiffel (1884). Steel truss deck arch, main span 165 m, total length 565 m, 122 m above ground.

Illustration © Gustave Eiffel, Mémoire sur le Viaduc de Garabit, Paris: Librairie Polytechnique, Baudry et Cie, Editeurs, 1889 (taken from K.E. Kurrer: Geschichte der Baustatik. 2. Auflage, Ernst&Sohn, 2016).

- If the arch abutments are hinged from the beginning of construction, the structural safety during erection fully relies on the temporary towers and stays
- While this appears more economical, it is certainly less robust. In the following years, steel truss arches were thus frequently cantilevered starting with a clamped arch (converted to a hinge after closure) combined with temporary towers and stays.

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

157

Illustration: Erection of the Garabit Viaduct, Gustave Eiffel (1884). Steel truss deck arch, main span 165 m, total length 565 m, 122 m above ground.

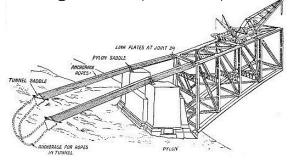
Photo of finished bridge © Patrick Giraud, Wikimedia Commons. left side © Gallicia digital library, Erection process photo right side © G. Eiffel, Notice sur le Viaduc du Garabit (près Saint-Flour, ligne de Marvejols a Neussargues), Imprimérie administrative & des chemins de fer de Paul Dupont, 1888

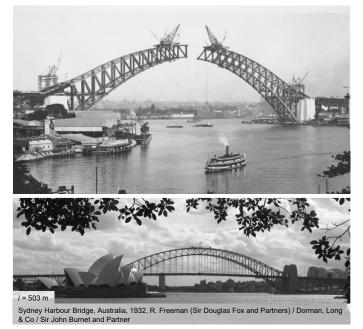
- Among the many cantilever-constructed truss arch bridges worldwide, there are several iconic structures.
- The Bayonne Bridge, across the Kill van Kull strait, designed by Swiss engineer Othmar Ammann and his team, set a new arch span record of 511 m when it opened in 1930 (top right photo), that held until 1977.
- In order to increase navigational clearance, the deck was raised by about 20 m in 2017, under full traffic during construction – an extraordinary achievement (bottom photos)

158

11.04.2023

Bayonne Bridge, USA, 1931, Othmar Ammann


= 511 m


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: Bayonne Bridge, Staten Island, Othmar Ammann (1931). Cantilever constructed (with temporary piers) two-hinge steel truss through arch, arch span 511 m (record arch span at the time, currently the 5th longest arch bridge in the world), width 30.5 m, total height 99 m. Deck raised by ca. 20 m in 2017 to increase navigational clearance, construction under traffic.

© top photo Jim.Henderson, wikimedia commons. © double deck Arnold Reinhold, wikimedia commons, © construction 1931 Americanbridge.net

- The Sydney Harbour Bridge, with a slightly smaller span of 503 m, is another, perhaps even more iconic steel truss arch bridge.
- While temporary supports in the Kill van Kulll were used in the former, the Sydney Harbour Bridge was built by cantilevering without temporary towers nor stays.
- In turn, massive temporary steel support cables running in tunnels were used during construction (128 cables @ 1.2 MN each (tested to 5 MN).

159

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

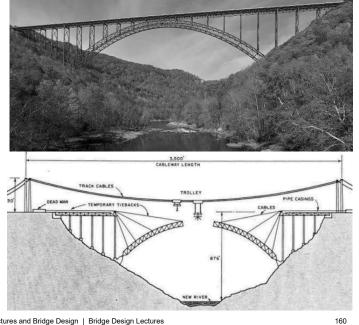
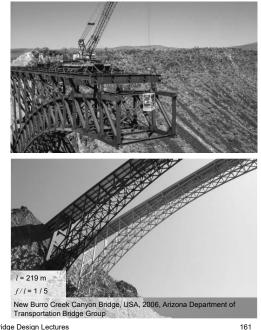

Photos: Sydney Harbour Bridge, R. Freeman (Sir Douglas Fox and Partners) / Dorman, Long & Co / Sir John Burnet and Partner, (1932). Cantilever constructed two-hinge steel truss through arch, arch span 503 m (currently still the 7th longest arch bridge in the world), width 49 m, total height 134 m.

Photo on left side (support cables): © https://railwaywondersoftheworld.com/sydney-harbour.html and https://sydney-harbour-bridge.nesa.nsw.edu.au/engineering-studies/support-cables.php. (information on cable forces). Photos on right side: top © National Museum Australia. bottom © Wikipedia.

- The New River Gorge Bridge, West Virginia, set a new arch span record (518 m) in 1977, that held until 2012.
- While the Bayonne Bridge and the Sydney Harbour Bridge are through arches – though the full arch thrust is resisted by the foundations –, the New River Gorge Bridge is a deck arch.
- This enabled using stays extending from the deck above the abutment (figure), similar as in the Garabit viaduct, and building the arch hinged at abutments.
- Other than in Garabit, the arch segments were transported via a cableway system (Seilkran).

11.04.2023



ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: New River Gorge Bridge, Fayetteville, West Virginia, C. Knudsen, American Bridge Co. (1977). Cantilever constructed two-hinge weathering steel truss deck arch, arch span 518.2 m, total height 174 m.

Photos and illustrations: bottom © National Park Service. Top Wikipedia.

- Steel truss arches are still being built today, see e.g. the bridge illustrated on this slide (New Burro Creek Bridge, 2007), cantilevered using temporary diagonals similar as in recent concrete arches, see behind).
- However, mainly due to the relatively high cost of steel as a compression member, they have become less competitive compared to other typologies:
 - → Cable-stayed bridges are more economical than tied or through arches in most cases, particularly for very large spans
 - → Concrete arch bridges have become more economical for medium-large spans by the development of erection methods that are much more efficient than centrings
 - → Recently, steel-concrete arch bridges have become economical for even longer spans and are frequently used, particularly in China

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

....

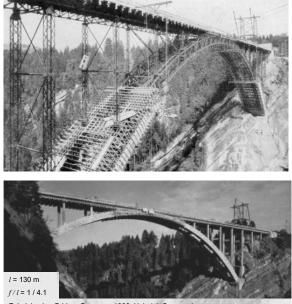
Illustration and photo: New Burro Creek Canyon Bridge, Arizona Department of Transportation (2006). Weathering steel truss deck arch, main span 219 m. Cantilever construction using temporary diagonals and ties at deck level.

Top photo © AISC / NSBA. Bottom Photo © Eric Sakovski, highestbridges.com

Arch bridges

Erection methods – The Melan System and related methods

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

162

- The erection of efficient arch bridges can be greatly facilitated by the combined use of steel and concrete.
- Already in 1892, Josef Melan patented his Melan System, which used steel profiles as "rigid reinforcement" – essentially a composite construction system (see notes). Applying this system to arch bridges consists of the following:
 - → erecting a steel arch (steel truss, bracings provided to ensure stability against buckling)
 - \rightarrow fixing a (timber) formwork to the steel arch

11.04.2023

- \rightarrow casting the concrete around the steel profiles
- Melan himself did not design many structures, and many engineers at the time had concerns about the combined action of steel profiles and concrete. Composite action was not well understood, and shear connectors unknown.
- Heinrich Spangenberg resolved the concerns regarding different stress states in steel and concrete by ballasting the steel arch with gravel and removing the latter in the sections where the concrete was cast (System Melan-Spangenberg).
- The Echelsbacher Brücke (illustrations) was the longest span arch built using this system.

Echelsbacher Bridge, Germany, 1930, Heinrich Spangenberg

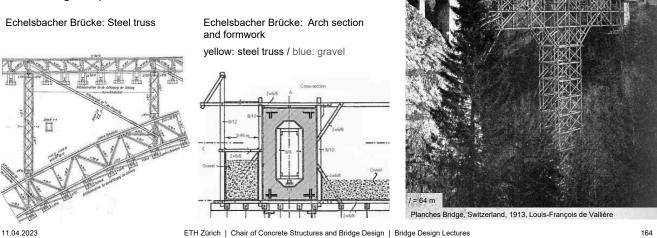
163

Josef Melan, Professor in Brno, Vienna and Prague, was the father of Ernst Melan (known e.g through his work on initial stress states, concluding that determining the stress state in a structure is useless). The Melan System was competing with Hennebique's system and others at the time, but rather than reinforcing bars as the Hennebique System, used steel profiles as "rigid reinforcement". While the system was primarily intended for floor slabs, it could also be used for bridges.

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: Echelsbacher Brücke, Ammerschlucht, H. Spangenberg, Germany (1930). Melan-Spangenberg system arch, span 130 m. © © F. Düll, R. Gerhardt, "Die Echelsbacher Brücke," Ernst&Sohn, Berlin, 1931 (top copied from H. Eggemann, K.-E. Kurrer, "On the International Propagation of the Melan Arch System since 1892", 3rd International Congress on Construction History, 2009, bottom from K. Goj, M. Hennecke, "Restoration of the Echelsbacher Bridge in Germany," *Engineering History and Heritage*, Vol.170, Issue EH3, pp. 152-161).

- However, the Melan-Spangenberg system complicated erection and undermined the economical advantages of the Melan System
 - → many, if not most "Melan arch bridges" were built using conventional falsework
 - → Often, Melan System trusses were supported on towers / shoring, see photos of Pont des Planches



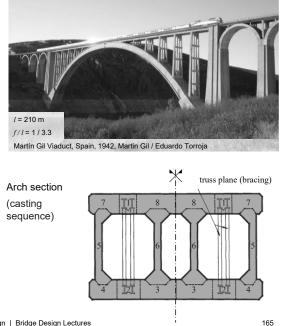

Photo: Pont des Planches, Grande Eau, Vaud, L.F. de Vallière (1913). Melan system deck arch bridge, span 63.6m, height 60 m. Built using timber falsework (the latter re-used for the Pont du Vanel 5 km downstream).

Photo © M. Ros, Der Bau von Gerüsten und Hochbauten aus Holz in der Schweiz, Beilage zum Diskussionsbericht Nr. 5 der EMPA «SIA Normen für Holzbauten», 1925

Illustrations: Echelsbacher Brücke, Ammerschlucht, H. Spangenberg, Germany (1930). Melan-Spangenberg system arch, span 130 m.

© F. Düll, R. Gerhardt, "Die Echelsbacher Brücke," Ernst&Sohn, Berlin, 1931 (copied from K. Goj, M. Hennecke, "Restoration of the Echelsbacher Bridge in Germany," *Engineering History and Heritage*, Vol.170, Issue EH3, pp. 152-161).

- The Spanish engineer and entrepreneur José Eugenio Ribera optimised the Melan System (double trusses providing more stiffness) and patented the modified system himself in 1902.
- Ribera was very successful with this system in Spain, building several hundred bridges his patent.
- Fritz von Emperger, a scholar of Melan, was similarly successive with the original Melan System in the U.S. (Melan Arch. Constr. Company).
- The Melan-Ribera System was refined to perfection by Eduardo Torroja in the Viaducto Martín Gil (Río Esla, embalse de Ricobayo), by subdividing the concrete section in several parts, successively increasing the strength and adding more weight. This way, the arch with 210 m span could be built using a surprisingly light steel truss (less than 500 kg/m, according to L.M. Viartola, for the 4.5 m deep concrete arch, see notes).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Ilustration and photo: Viaducto Martín Gil, Embalse de Ricobayo (río Esla), Zamora, Spain, Martin Gil y Eduardo Torroja (1942). Railway viaduct with arch main span, total length 479 m, deck arch, span 209.8 m, f/L = 1/3.3. Construction of the reinforced concrete arch designed by M. Gil was interrupted due to the Spanish civil war. E. Torroja took over the Project after the war, changing the arch design and erection method to the Ribera System, essentially corresponding to the Melan System). World's longest concrete arch bridge at time of completion.

Photo © Luis Cortés Zacarías, Wikimedia commons. Illustration adopted from Archivo Torroja, CEHOPU-CEDEX

Reference steel weight: L.M. Viartola, «Construcción de puentes arco,» Revista de Obras Públicas, Febrero 2005, pp. 23-36.

- By subdividing the cross-section in several stages, both in cross-section as well as along the arch axis, bending moments during erection and buckling risk could be minimised.
- While this was economical at the time, such a refined subdivision of the section would be excessively expensive today (high labour cost)

Half arch section with reinforcement 166 ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

11.04.2023

Photos: Viaducto Martín Gil, Embalse de Ricobayo (río Esla), Zamora, Spain, Martin Gil y Eduardo Torroja (1942). Railway viaduct with arch main span, total length 479 m, deck arch, span 209.8 m, f/L = 1/3.3. Construction of the reinforced concrete arch designed by M. Gil was interrupted due to the Spanish civil war. E. Torroja took over the Project after the war, changing the arch design and erection method to the Ribera System, essentially corresponding to the Melan System). World's longest concrete arch bridge at time of completion.

Top photo © Archivo Torroja, CEHOPU-CEDEX. Bottom photo © Luis Cortés Zacarías, Wikimedia commons. Entire Viaduct © railzamora.es

- In spite of the success of Ribera and Emperger, designers like Maillart did thus not use these systems, partly due to the mentioned concerns about the bond between steel and concrete (in fact, delamination has been observed in some early Melan arches), partly due to other reasons (rivalry, nationalism, ...).
- During and after World War II, due to the scarcity of steel, the building systems with rigid reinforcement (Melan, Ribera, and others) disappeared.
- For example, the elegant arches of Ch. Menn (Tamina, Nanin e Casciella) were built on timber falsework, just like arches centuries earlier.
- Due to the increasing Labour cost, this was already very costly at the time, and would be excessively expensive today.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

167

Photos: Centring and finished Rheinbrücke Tamins, Christian Menn (1962). Concrete deck arch bridge, span 158 m.

Photos © P. Marti, O. Monsch, B. Schilling. Ingenieur-Betonbau.

- Actually, it appears that the Melan System, and its potential economical benefits, had faded into oblivion (or it was still regarded as inferior due to the concerns about steel-concrete connection).
- For example, in his seminal book *Prestressed Concrete Bridges*, Ch. Menn – doubtlessly a leading arch bridge designer of his time – briefly mentioned the Melan system and Emperger's applications to arches in the historical overview, but
 - → throughout the entire section of arch bridges implicitly presumed casting on centring
 - \rightarrow merely referred to different ways of casting the arch to minimise the load to be carried by the centring
- In slender slab arches, which are very elegant in the final configuration (and therefore preferred by Ch. Menn), the centring needs to carry not only the weight of the arch, but – to avoid instability – also a significant portion of the column and deck girder weights, requiring heavy and expensive centrings.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

168

Photos: Centring and finished Ponte Cascella, Christian Menn (1968). Concrete deck arch bridge, span 96m, total length173 m

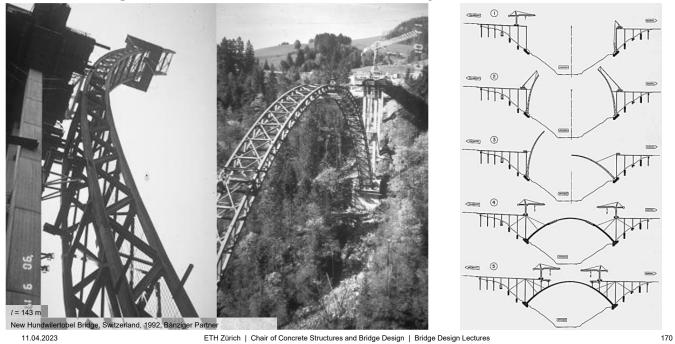
Photos © P. Marti, O. Monsch, B. Schilling. Ingenieur-Betonbau.

- Some designers did, however, use the Melan System. This and the next slide show two examples of Swiss and Austrian applications, where the steel trusses were assembled upright and rotated subsequently around the arch abutments (as previously used in erecting large arch centrings, e.g. for the Pont de Longeray, 1943).
- Although the clients and engineers involved in the projects shown on this slide were convinced that the system had many advantages and anticipated a more frequent use in the future, very few arch bridges were built in Europe using the Melan System over the past decades.

11.04.2023

Rotation of centering for the Longeray arch bridge

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


l = 143 m

169

Photos: Melan System arches; Steel half arches assembled upright (with formwork in Stampfgraben) and subsequently rotated around arch abutments until closure, controlled by stays.

- Neue Hundwilertobelbrücke, Hundwil/Waldstatt, Bänziger Partner (1992). Deck arch, span 143 m. Geometry of arch regulated by stays. Photo © Tec21
- Stampfgraben Bridge, Kärnten, P. Schallaschek (2003). Deck arch, span 135 m. Photo © H. Eggemann, K.-E. Kurrer, "On the International Propagation of the Melan Arch System since 1892", 3rd International Congress on Construction History, 2009.

Reference Viaduc de Longeray: Marcel Prade, Ponts & Viaducs au XIXe Siècle. Brissaud, 1988.

Neue Hundwilertobelbrücke, Hundwil/Waldstatt, Bänziger Partner (1992). Deck arch, span 143 m. Geometry of arch regulated by stays.

Photos and figure © A. Köppel, R. Walser. «Hundwilertobelbrücke.» Schweizer Ingenieur und Architekt Nr. 11, 14. März 1991

Arch bridges

Erection methods – Vertical assembly and rotation

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

171

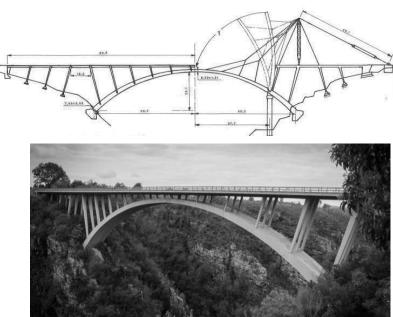
Arch bridges - Erection methods: Vertical assembly and rotation

- The vertical assembly of arches, with subsequent rotation to closure, has also been used but for entire arch halves.
- In steel arches, tieback forces are moderate thanks to the • reduced weight, as in the Viaducto de Alconétar (2006).

Photos: Arco de Alconetar, Embalse de Alcántara, Cáceres, Spain, J.A. Llombart (2006). Weathering twin steel arch bridges, deck arches, span 220 m, length 400 m. Half arches assembled upright and

Photos © jallombart.com

subsequently rotated around abutment hinges.


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

172

Arch bridges – Erection methods: Vertical assembly and rotation

- Much higher tieback forces are required in concrete arches, due to the higher weight.
- Nonetheless, Riccardo Morandi used this method already in the 1950s, first in a footbridge (Vagli Sotto, Garfagnana) and then in the Paul Sauer Bridge over the Storms River, South Africa (1956, span 120 m, rotated arch halves 37 m each).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

173

Photos: Paul Sauer Bridge over the Storms River, N2 Garden route from Port Elizabeth to Cape Town, South Africa, Riccardo Morandi (1956). Concrete deck arch bridge, span 100 m, 120 m above river. Half arches built upright and subsequently rotated around provisional concrete hinges at springing lines.

Illustration © structurae.net, Jacques Mossot. Photo © https://travellersdelight.de/

Arch bridges

Erection methods – Cantilever-constructed concrete arches

11.04.2023

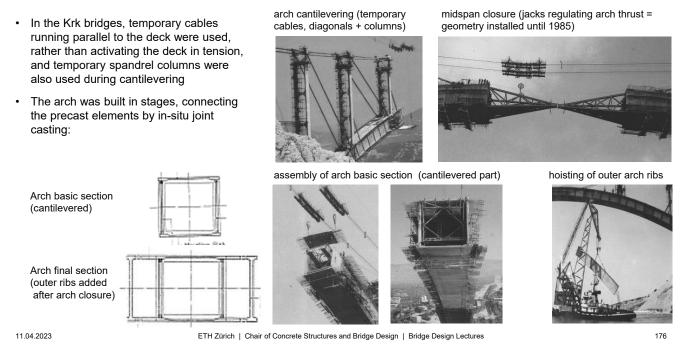
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

174

- Rather than Melan System arches, the following construction methods have been frequently used for medium-large span concrete arches in Europe in the last decades
 - → cantilevering using temporary stays and, in longer spans, towers ("stayed arch cantilevering")
 - → cantilevering of deck and arch as a truss, with temporary diagonals ("deck-and-arch truss cantilevering", sometimes using temporary cables running parallel to the deck and temporary spandrel columns)
- In the following, deck and arch truss cantilevering is described first. Stayed arch cantilevering was used earlier and is more frequently used today. It is also used in the modern CFST method, and therefore outlined afterwards.
- The first large-span deck-and-arch truss cantilevered concrete arches known to the authors are the Krk bridges (spans of 244 and 390 m), designed by Ilija Stojadinović.
- The longer of the two bridges was the record span for concrete arch bridges until 1997; accounting for the underwater part, it would have held this record even longer.

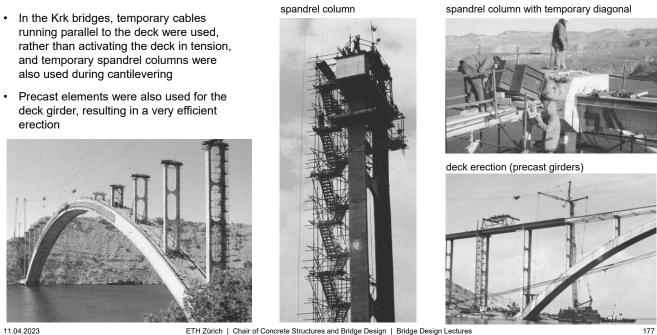
I = 390 m *f*/*I* = 1 / 5.8 Krk Arch Bridges, Croatia, 1980, Ilija Stojadinović

11.04.2023


ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

175

Photos: Krk arch bridges, Ilija Stojadinović (1980). Concrete deck arch bridges, spans 390 m / 244 m, f/l = 1/5.8 and 1/4.5


Photos courtesy of B. Stojadinovic.

Further reading: L. Savor, J. Bleiziffer, «Long Span Arch Bridges of Europe,» Long arch bridges, *Proceedings*, 2008, pp. 171-180.

Krk arch bridges, Ilija Stojadinović (1980). Concrete deck arch bridges, spans 390 m / 244 m, f/l = 1/5.8 and 1/4.5

Photos and drawings courtesy of B. Stojadinovic.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


Krk arch bridges, Ilija Stojadinović (1980). Concrete deck arch bridges, spans 390 m / 244 m, f/l = 1/5.8 and 1/4.5

Photos and drawings courtesy of B. Stojadinovic.

- The Arco de la Regenta (Puente Pintor Fierros) was also built using deck-and-arch cantilevering, in this case using the steel-concrete composite deck as tension chord.
- This bridge was opened in 1996 and widened from two to four lanes (12 → 22 m width) in 2008, under traffic, without substantial strengthening need on arch nor foundations: These had already been designed in 1996 to enable a later widening.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

178

Arco de la Regenta (Puente pintor Fierros), near Cudillero, Asturias. J.J. Arenas (1996, widened to 4 lanes in 2008). Concrete hollow section arch with steel-concrete composite deck, deck arch, span 194 m, length 380 m, 100 m above ground.

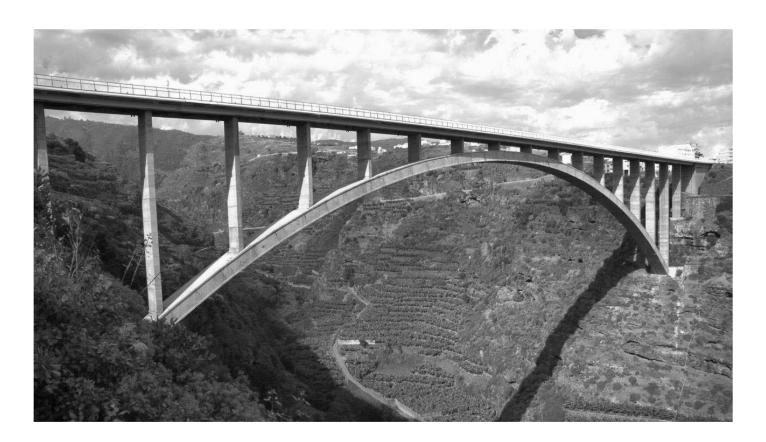
Photos © Arenas y Asociados /Luis Miravalles / Flickr / Antonio Navarro Manso

- The Arco de los Tilos is one of the longest span concrete arches built in the past decades by deckand-arch truss cantilevering.
- As in the Arco de la Regenta, the steel-concrete composite deck was used as tension chord.

11.04.2023

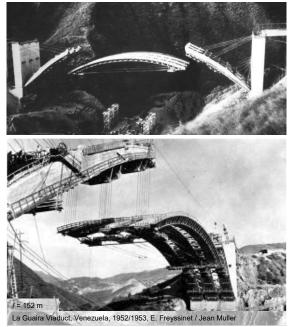
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

179


Arco de los Tilos, S. Pérez Fadón and J.E. Herrero Beneitez, San Andrés y Sauces, Isla de La Palma, Canarias (2004). Concrete hollow section arch with steel-concrete composite deck, deck arch, span 255 m, length 353 m, 150 m above ground.

Photos: left and top right: <u>http://arquitectur.blogspot.com/2018/01/puente-de-los-tilos-la-palma-islas.html</u>; bottom right: Wikipedia <u>https://de.wikipedia.org/wiki/Datei:Puente_de_los_Tilos.jpg</u>

Tilos bridge, Spain, 2004. S. Pérez-Fadón Martínez and J.E. Herrero Benítez


Photos: https://www.flickr.com/photos/13311129@N00/2717729836/ © Lutz Hirschmann

Tilos bridge, Spain, 2004. S. Pérez-Fadón Martínez and J.E. Herrero Benítez

Photos: https://www.flickr.com/photos/lutzmann/2717729818/in/photostream/ © Lutz Hirschmann

- Stayed arch cantilevering was used earlier than deck-and-arch cantilevering and is more frequently used today. It is also used in the modern CFST method described at the end of this chapter.
- While stayed arch cantilevering had been used in steel bridges much earlier, the first known application of stayed concrete arch cantilevering are the three arch viaducts of the Caracas-La Guaira motorway in Venezuela, designed by E. Freyssinet / J. Muller and built by Campenon Bernard.
- Rather than cantilevering the entire arch, the middle part was built on an 80 m long falsework suspended from the arch cantilevers. This has the advantage that flat, inefficient stays can be avoided without the need for towers.

182

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: One of the three Viaducts in the Caracas-La Guaira Mororway, Venezuela, E. Freyssinet / Jean Muller (1952/53). Three concrete deck arch bridges, spans 152 / 146 / 138 m. Stayed cantilevering of outer parts of arches, completed by casting on midspan falsework (80 m length) suspended from the previously erected, stayed arch parts.

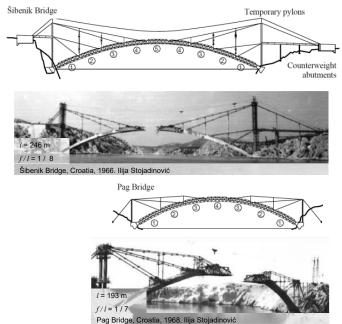
Top photo: © J. Muller, «La conception des ponts, » Culture Technique No. 26, 1992, pp. 271-281.

Bottom Photo http://efreyssinet-association.com/

- A similar erection method as in the Caracas-La Guaira arches was used for the outer parts of the falsework of the Ponte da Arrábida (span 270 m), see photos on right side .
- Today, stayed cantilevering of the entire arch is more frequent, see bottom photo (Ponte Val Crotta in Ticino, span 90 m).
- Commonly, the arch is cast in situ, using formwork travellers similar to those used for cantilever-constructed concrete girders
- Alternatively, precast segmental cantilevering is also used.

 Val Crotta Bridge, Switzerland, 1985, L. Brenni and G. Dazio

 11.04.2023
 ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


183

Photos: Right side Falsework installation of the Ponte da Arrábida, Porto – Vila Nova de Gaia, Edgar Cardoso (1963). Concrete arch bridge, main span 270 m (record span for concrete arches at the time), total length 493 m, f/L = 1/5.2. Twin hollow box concrete arches, concrete deck with open cross-section (grillage). Entire arch falsework used twice (moved transversely after casting the first arch to cast second one).

Bottom left Val Crotta Bridge, Ticino, L. Brenni and G. Dazio (1985). Concrete arch bridge, deck arch, span 90 m, built by stayed cantilevering.

Photos top © http://portoarc.blogspot.com/2013/04/28-ribeiras-e-pontes-iii.html. Bottom: L. Brenni, G. Dazio. «Brücke über das Val Crotta,» Prestressed Concrete in Switzerland 1982-1986, fip Swiss Group, 1986.

- In the deck-and-arch truss cantilevering method, high tieback forces are required, limiting the field of application in terms of span and soil conditions for anchorage of temporary backstays.
- In stayed arch cantilevering, equally high stayback tie forces result if no towers are used. The tieback forces can be substantially reduced by using temporary towers, similar as used when cantilevering large span steel truss arches
- If temporary towers are used in stayed arch cantilevering is an economical decision: The extra cost for the towers needs to be compensated by the reduced stay forces and backstay anchorage cost. Usually, towers are economical for large span arches.
- The slide shows different choices for tower heights adopted in two arch bridges designed by Ilija Stojadinovic: The Šibenik arch bridge (span 246 m, high towers) and the Pag arch bridge (span 193 m, low towers).

184

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Photos: Šibenik (top) and Pag (bottom) arch bridges, Ilija Stojadinović (1966/1968). Spans 246 and 193 m, f/I = 1/8 and 1/7. Concrete arch bridges built by stayed arch cantilevering. Arches cast in situ, deck using precast girders. Variable tower height to optimise economy.

Photos and drawings © Z. Šavor, J. Radić, N. Mujkanović, A. Mandić, "Construction of Šibenik and Pag Arch Bridges," Construction of Arch Bridges, Proceedings, 2009, pp. 206-214

- The Viaducto de Almonte, whose arch was built cantilevered using towers • and stays, is one of the world's longest - and most elegant - concrete arches, and the longest span high speed train arch bridge worldwide.
- More details, see presentation of guest speaker Guillermo Capellán.

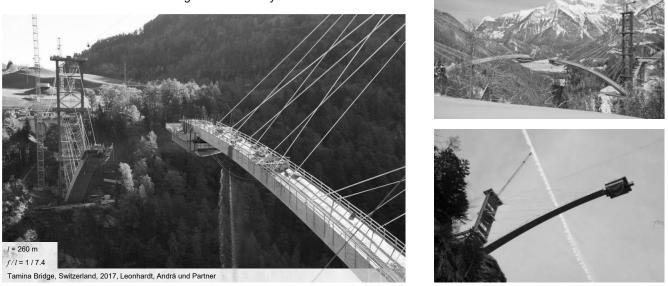
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

185

Photos: Viaducto de Almonte, Arenas & Asociados (J.J. Arenas, G. Capellán, M. Sacristán), High Speed Line Madrid-Extremadura-Portugal, Cáceres, Spain (2016). High speed train concrete deck arch bridge, main span 384 m, total length 996 m, f/L = 1/5.7. Hollow box high strength concrete arch, prestressed concrete box girder.

Photos © Arenas & Asociados.

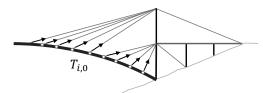


Photos: Viaducto de Almonte, Arenas & Asociados (J.J. Arenas, G. Capellán, M. Sacristán), High Speed Line Madrid-Extremadura-portugal, Cáceres, Spain (2016). High speed train concrete deck arch bridge, main span 384 m, total length 996 m, f/L = 1/5.7. Hollow box high strength concrete arch, prestressed concrete box girder.

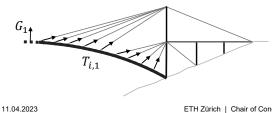
Photo © Arenas & Asociados.

• The Tamina Bridge is another recent example of a large span concrete arch cantilevered using towers and stays

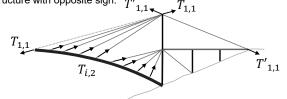
11.04.2023


Tamina Bridge, Pfäfers-Valens, Leonhardt Andrä und Partner (with dsp Ingenieure + Planer und Smoltczyk&Partner), deck arch, span 260 m, f/L = 1/7.4, total length 475 m.

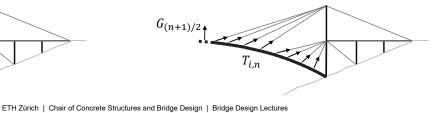
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


187

Photos © Meichtry und Widmer (construction engineering for contractor).


0. Final stage of half arch: Half arch modelled with hinges at all intersection points (arch-ties) except in the last tie close to the crown. This arrangement gives the tension forces $T_{i,0}$ of the ties in the last construction phase. Cable preload is chosen such that the correct arch geometry is obtained.

1. Disassembling the structure from the final stage of the half arch: Half arch without hinges. The last segment is removed and its self-weight is applied to the remaining structure with opposite sign.



2. Disassembling the structure from the previous step: Half arch without last segment, without hinges. The last stay cable is removed and the tension forces $T_{l,l}$ and $T'_{l,l}$ (cable forces in corresponding cables after applying the negative self-weight G₁ in stage 1) are applied to the structure with opposite sign. $T'_{1,1} = T_{1,1}$

...n. Disassembling the structure from an intermediate stage of the half arch: Gradually shorter part of half arch without hinges. The same procedure (steps 1-2) is used to obtain the forces in each stage until the half arch is completely disassembled.

188

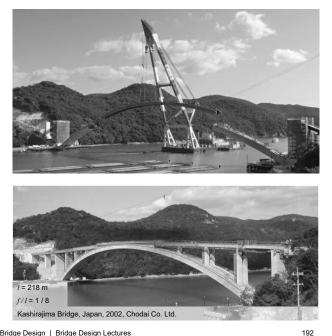
The calculation of the internal forces in the arch during construction can be determined by disassembling the structure, starting from the final stage of the half arch, i.e. from the final configuration and removing the structure in the opposite direction as it is built.

Hinges in the final stage are introduced to ensure that the arch carries (almost) pure compression in this state.

Tamina bridge: erection

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design

Arch bridges


Erection methods – Evolution of the Melan System

11.04.2023

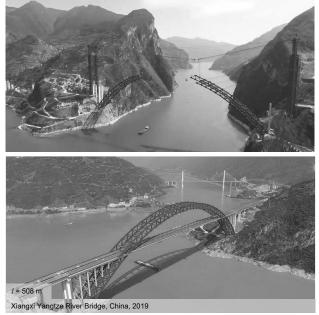
ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

191

- In Asia, arch erection methods inspired by the Melan System have been much more successful ofer the past decades.
- In Japan, more than 20 arch bridges have been built since 1970 using partial Melan System solutions (according to Eggemann and Kurrer, see notes and photos on this slide: Kashirajima Bridge, span 218 m).
 - → erecting parts near abutments conventionally by arch cantilevering (stayed or trussed)
 - \rightarrow lifting in steel girders for the Melan System midspan part
- In Japan and particularly in China, many long span arch bridges have been, and are being erected using hollow steel profiles, filled with concrete after closure. The steel profiles thus serve as combined falsework and reinforcement.
- This method, evidently similar to the Melan System (though only recognised by the Japanese), is known as "concrete lapping with pre-erected composite" (CLCA) in Japan, and as "Concrete filled steel tube arches" (CFST) in China.
- · The CFST Method is described on the following slides.

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


Photos: Kashirajima Bridge, Seto Inland Sea, Okayama, Japan (2002). Partial Melan System deck arch, span 218 m, f/L = 1/8. Concrete arch (box girder) cantilevered with stays from abutments, steel box of middle part (130.4 m) using Melan System lifted in with floating crane. Steel box of idle part encased with concrete (steel serving as inner formwork) after closure.

Photos © Dywydag Systems, //www.dywidag-formties.com/

Source recommended for further reading: H. Eggemann, K.-E. Kurrer, "On the International Propagation of the Melan Arch System since 1892", 3rd International Congress on Construction History, 2009.

- In CFST arch bridges, hollow section steel arches are erected by stayed cantilevering and subsequently grouted with concrete, forming a steel-concrete composite arch.
- In China, more than 400 CFST arch bridges have been built (≥ 12 with L > 300 m, ≥ 4 with L > 400 m). This slide shows a recent example (Xiangxi Yangtze River Bridge, span 508 m (2019).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

193

Photos: Xiangxi Yangtze River Bridge, CFST arch bridge, span 508 m, height 240 m © E. Sakowski, www.highestbridges.com

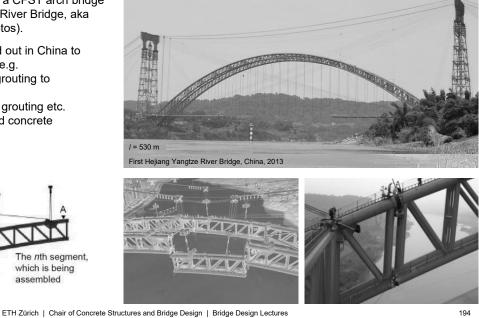
- Currently, the maximum span of a CFST arch bridge is 530 m (First Hejiang Yangtze River Bridge, aka Bosideng Bridge, 2013, see photos).
- Much research has been carried out in China to optimise this type of structures, e.g.
 - ... adjusting stay forces during grouting to minimise bending moments
 - ... grout properties and vacuum grouting etc.
 - ... composite action of tubes and concrete

Cable

The (n-1)th

segment

The nth segment, which is being


assembled

Cable

The (n-2)th seament

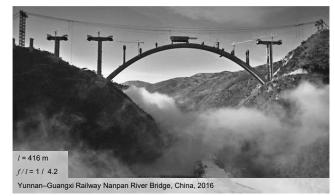
... etc.

11.04.2023

Photos and illustrations: First Hejiang Yangtze River Bridge (aka Bosideng Bridge), Sichuan (2013). CFST through arch bridge, main span 530 m, total length 831 m. Currently the world's longest span CFST bridge, and the 3rd longest arch bridge overall (two steel truss arch bridges have longer spans: Chaotianmen 552 m, Lupu 550 m).

Source and further reading: J. Zheng, J, Wang, "Concrete-Filled Steel Tube Arch Bridges in China," Bridge Engineering Review paper, *Engineering*, No, 4 (2018), pp. 143-155.

Photos top © Wikipedia. Remaining photos Zheng, J, Wang, "Concrete-Filled Steel Tube Arch Bridges in China," Bridge Engineering Review paper, Engineering, No, 4 (2018), pp. 143-155.




First Hejiang Yangtze River Bridge (aka Bosideng Bridge), Sichuan (2013). CFST through arch bridge, main span 530 m, total length 831 m. Currently the world's longest span CFST bridge, and the 3rd longest arch bridge overall (two steel truss arch bridges have longer spans: Chaotianmen 552 m, Lupu 550 m).

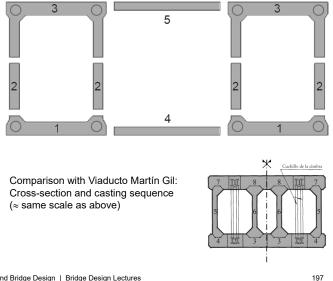
Source and further reading: J. Zheng, J, Wang, "Concrete-Filled Steel Tube Arch Bridges in China," Bridge Engineering Review paper, *Engineering*, No, 4 (2018), pp. 143-155.

Photo © megaconstrucciones.net

- A further development of CFST bridges consists in arches made of a CFST composite steel skeleton encased by concrete – even closer to the concept of the original Melan System – are being built, mainly also in China ("CFST reinforced concrete arches").
- A recent example is the Yunnan–Guangxi Railway Nanpan River Bridge (aka Nanpanjiang Railway Bridge Qiubei, see photos).

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures


196

Photos: Yunnan–Guangxi Railway Nanpan River Bridge (aka Nanpanjiang Railway Bridge Qiubei), CFST reinforced concrete deck arch bridge, span 416 m, f/L = 1/4.2, total length 852 m.

Photos © Erik Sakowski / highestbridges.com

- The similarity of the cross-section of the Yunnan–Guangxi Railway Nanpan River Bridge to Torroja's solution for the Viaducto Martín Gil is striking– albeit at a much larger scale (figures on right side):
 - → Viaducto Martín Gil:
 - Span 192 m, f/L = 1/3.3, h_{arch} = 4.5 m \rightarrow Nanpan River Bridge:
 - Span 416 m, f/L = 1/4.2, $h_{arch} \approx 9$ m (steel tubes = 8 m)
- CFST reinforced concrete arches have clear advantages in terms of durability and maintenance (no coating)
- Furthermore, they are very efficient and economical:
 → high contribution of inexpensive concrete
 - \rightarrow avoidance of buckling issues by gradually increasing inertia and load carried by the arch
 - → minimisation of bending moments during casting by optimising casting sequence along arch span, and actively controlling stay forces
- Spans up to 700...800 m appear economically feasible in China according to Zheng and Wang (source see note).

Yunnan–Guangxi Railway Nanpan River Bridge: Cross-section and casting sequence (size steel tubes approximate)

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Yunnan–Guangxi Railway Nanpan River Bridge: Source and further reading: J. Zheng, J, Wang, "Concrete-Filled Steel Tube Arch Bridges in China," Bridge Engineering Review paper, *Engineering*, No, 4 (2018), pp. 143-155.

Viaducto martin Gil: Illustration adopted from Archivo Torroja, CEHOPU-CEDEX

Yunnan–Guangxi Railway Nanpan River Bridge (aka Nanpanjiang Railway Bridge Qiubei), CFST reinforced concrete deck arch bridge, span 416 m, f/L = 1/4.2, total length 852 m.

Photos © Erik Sakowski / highestbridges.com

Arch bridges

Erection methods – Final remarks

11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

199

- In many arch bridges, the deflection caused by the axial deformation of the arch – causing significant bending moments, see structural behaviour – is compensated at closure by applying a controlled axial force at the crown by means of hydraulic jacks.
- Throughout the history of arch bridges, there has been a debate whether such an "opening of the crown" is useful or even required, as there are pros and cons:
 - \rightarrow helps actively controlling the geometry
 - → helps removing the formwork and falsework in concrete arches (if the jacking force corresponds to the arch thrust under dead load, the arch lifts off the formwork)
 - \rightarrow in tied arches, it may eliminate the need for hanger retensioning
 - \rightarrow causes extra cost and complicates the erection process
 - \rightarrow in concrete arches, most of the effect is lost due to creep
- Essentially, whether such an operation is carried out is a decision of the designer. In any case, the design has to consider the corresponding internal actions.

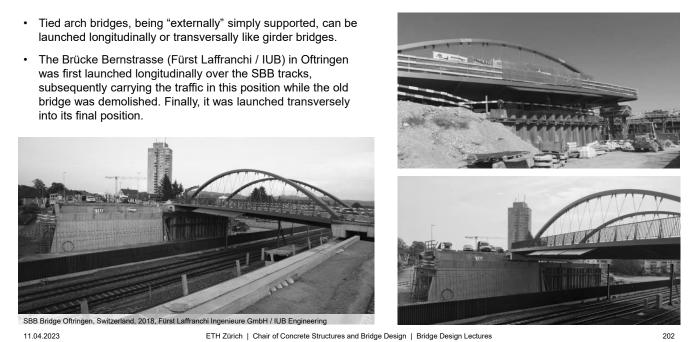
11.04.2023

ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

200

Photos: Puende del Tercer Milenio,. Zaragoza, J.J. Arenas (). Opening of the arch at the crown, 120 MN jacking force. Photos © Arenas & Asociados.

- Short span steel arch bridges are usually lifted in, where possible with temporary shoring.
- The slides show two examples, with and without shoring.

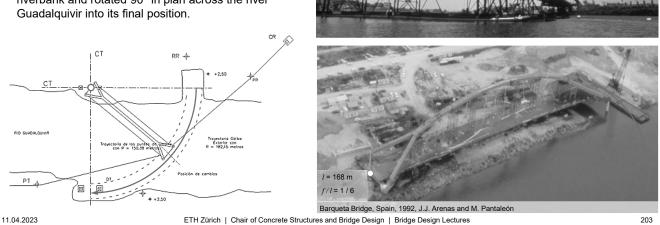


 11.04.2023
 ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures

Left: Tardis bridge, Mastrils-Landquart, Switzerland, dsp Ingenieure + Planer (2003). Steel through arch with steel-concrete composite deck, span 85 m, length 100 m. Photo © dsp Ingenieure + Planer.

201

Right: Puente sobre el río Pontones, Cta. Hoznayo-Villaverde, Cantabria, Spain, Arenas & Asociados (2005). Steel tied arch with steel-concrete composite deck, span 60 m, f/L = 1/8. Photo © Arenas & Asociados.



Brücke über SBB, Bernstrasse Oftringen, Fürst Laffranchi Ingenieure GmbH / IUB Engineering (2018). Steel tied arch bridge with steel-concrete composite deck, span 36 m. Replacing an existing bridge with minimum traffic interruption.

Steel structure and inner part of concrete deck (weight 360 t) were built on a temporary dam (top right) and then incrementally launched longitudinally over railway lines. Subsequently, the bridge deck was completed and traffic deviated over the new bridge, such that the existing bridge could be demolished and the abutments of the new bridge be built (left). Finally, the new bridge (now weighing 1400 t) was transversely launched into its final position (bottom right), during a 36 hour traffic closure.

Photos © Fürst Laffranchi (top right) / IUB Engineering (left) / Hebag (launching contractor, bottom right)

- Tied arch bridges crossing water can be built on shore, using conventional construction methods (shoring, access for cranes, ...) and floated into their final position (similar to the Plougastel and Sandö bridge falsework commented earlier).
- The Barqueta Bridge in Sevilla was built on one riverbank and rotated 90° in plan across the river Guadalquivir into its final position.

Puente de la Barqueta, Sevilla, J.J. Arenas and M. Pantaleón (1992). Steel tied arch bridge with triangular portal frames and orthotropic deck. Span 168 m. Built on shore and rotated over the Guadalquivir river (Meandro de Ranillas) into final position. Weight

Photos © Arenas y Asociados.